• Title/Summary/Keyword: Global Navigation System

Search Result 944, Processing Time 0.03 seconds

Implementation of a Hybrid Navigation System for a Mobile Robot by Using INS/GPS and Indirect Feedback Kalman Filter (INS/GPS와 간접 되먹임 칼만 필터를 사용하는 이동 로봇의 복합 항법 시스템의 구현)

  • Kim, Min J.;Joo, Moon G.
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.6
    • /
    • pp.373-379
    • /
    • 2015
  • A hybrid navigation system is implemented to apply for a mobile robot. The hybrid navigation system consists of an inertial navigation system and a global positioning system. The inertial navigation system quickly calculates the position and the attitude of the robot by integrating directional accelerations, angular speed, and heading angle from a strap-down inertial measurement unit, but the results are available for a short time since it tends to diverge quickly. Global positioning system delivers position, heading angle, and traveling speed stably, but it has large deviation with slow update. Therefore, a hybrid navigation system uses the result from an inertial navigation system and corrects the result with the help of the global positioning system where an indirect feedback Kalman filter is used. We implement and confirm the performance of the hybrid navigation system through driving a car attaching it.

Autonomous Navigation of Mobile Robot Using Global Ultrasonic System (전역 초음파 시스템을 이용한 이동 로봇의 자율 주행)

  • 황병훈;이수영
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.6
    • /
    • pp.529-536
    • /
    • 2004
  • Autonomous navigation of an indoor mobile robot using the global ultrasonic system is presented in this paper. Since the trajectory error of the dead-reckoning navigation grows with time and distance, the autonomous navigation of a mobile robot requires to localize the current position of the robot, so that to compensate the trajectory error. The global ultrasonic system consisting of four ultrasonic generators fixed at a priori known positions in the work space and two receivers on the mobile robot has the similar structure with the well-known satellite GPS(Global Positioning System), and it is useful for the self-localization of an indoor mobile robot. The EKF(Extended Kalman Filter) algorithm for the self-localization is proposed and the autonomous navigation based on the self-localization is verified by experiments.

Current Status and Development Plan of Global Navigation Satellite System (위성항법시스템 운영 현황 및 개발 계획)

  • Ha, Ji-Hyun;Chun, Se-Bum
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.8 no.2
    • /
    • pp.46-53
    • /
    • 2010
  • In this paper, we explained status and development trend of GNSS (Global Navigation Satellite System): GPS (Global Satellite System) of US, GLONASS (Global Navigation Satellite System) of Russia, Galileo of EU, Beidou/Compass of China, and QZSS (Quasi-Zenith Satellite System) of Japan). System construction and operation status of five GNSS systems were summarized. In addition, development plan and modernization of these systems were explained.

  • PDF

Quality Monitoring Comparison of Global Positioning System and BeiDou System Received from Global Navigation Satellite System Receiver

  • Son, Eunseong;Im, Sung-Hyuck
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.4
    • /
    • pp.285-294
    • /
    • 2018
  • In this study, we implemented the data quality monitoring algorithm which is the previous step for real-time Global Navigation Satellite System (GNSS) correction generation and compared Global Positioning System (GPS) and BeiDou System (BDS). Signal Quality Monitoring (SQM), Data QM, and Measurement QM (MQM) that are well known in Ground Based Augmentation System (GBAS) were used for quality monitoring. SQM and Carrier Acceleration Ramp Step Test (CARST) of MQM result were divided by satellite elevation angle and analyzed. The data which are judged as abnormal are removed and presented as Root Mean Square (RMS), standard deviation, average, maximum, and minimum value.

CONCEPTUAL DESIGN OF MONITORING AND CONTROL SUBSYSTEM FOR GNSS GROUND STATION

  • Jeong, Seong-Kyun;Kim, In-Jun;Lee, Jae-Eun;Lee, Sang-Uk;Kim, Jae-Hoon
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.4
    • /
    • pp.389-396
    • /
    • 2007
  • The Global Navigation Satellite System (GNSS) becomes more important and is applied to various systems. Recently, the Galileo navigation system is being developed in Europe. Also, other countries like China, Japan and India are developing the global/regional navigation satellite system. As various global/regional navigation satellite systems are used, the navigation ground system gets more important for using the navigation system reasonably and efficiently. According to this trend, the technology of GNSS Ground Station (GGS) is developing in many fields. The one of purposes for this study is to develop the high precision receiver for GNSS sensor station and to provide ground infrastructure for better performance services on navigation system. In this study, we consider the configuration of GNSS Ground Station and analyze function of Monitoring and Control subsystem which is a part of GNSS Ground Station. We propose Monitoring and Control subsystem which contains the navigation software for GNSS Ground System to monitor and control equipments in GNSS Ground Station, to spread the applied field of navigation system, and to provide improved navigation information to user.

위성항법시스템 및 보강시스템의 구축 현황

  • Nam, Gi-Uk;Heo, Mun-Beom;Sim, Ju-Yeong
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.5 no.1
    • /
    • pp.65-74
    • /
    • 2007
  • 현재 운용중인 전 세계적인 위성항법시스템(GNSS : Global Navigation Satellite System)은 미국의 GPS(Global Positioning System)와 러시아의 GLONASS(Global Navigation Satellite System)가 있다. 전 세계적으로 주로 사용되는 시스템은 GPS이며, GLONASS는 러시아의 경제사정 악화로 인하여 지속적인 위성발사가 이루어지지 못하고 있다. 추가적으로 추진되고 있는 위성항법시스템은 유럽의 갈릴레오(Galileo), 중국의 북두(Beidou), 일본의 JRANS(Japanese Regional Advanced Navigation System) 그리고 2006년 5월에 구축 프로젝트가 승인된 인도의 IRNSS(Indian Regional Navigation Satellite System)가 있다. 보강시스템의 경우, 미국 FAA(Federal Aviation Administration)는 광역오차보정시스템(WAAS)을 Raytheon사와 개발하였으며, 현재 착륙용 근거리오차보정시스템(LAAS)을 Raytheon사 및 Honeywell사와 함께 정부/산업체 공동개발 사업(GIP; Government Industry Partnership)으로 진행 중에 있다. 유럽은 EGNOS(European Geostationary Navigation Overlay Service)를 사용하고 있으며, 일본의 MSAT(MTSAT Satellite Based Augmentation System)와 인도의 GAGAN(GPS and GEO Augmented Navigation)은 추진 중이다. 이 글에서는 위성항법시스템과 위성항법 보강시스템의 현황을 살펴본다.

  • PDF

Global Ultrasonic System for Autonomous Navigation of Indoor Mobile Robots

  • Park, Seong-Hoon;Yi, Soo-Yeong;Jin, Sang-Yoon;Kim, Jin-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.846-851
    • /
    • 2004
  • In this paper, we propose a global ultrasonic system for the self-localization and autonomous navigation of indoor mobile robots. The ultrasonic sensor is regarded as the most cost-effective ranging system among the possible alternatives, and it is widely used for general purpose, since it requires simple electronic drivers and has relatively high accuracy. The global ultrasonic system presented in this paper consists of four or more ultrasonic generators fixed at reference positions in the global coordinates of an indoor environment and two receivers mounted on the mobile robots. By using the RF (Radio Frequency) modules added to the ultrasonic sensors, the robot is able to control the ultrasonic generation and to obtain the critical distances from the reference positions, which are required in order to localize is position in the global coordinates. A kalman filter algorithm designed for the self-localization using the global ultrasonic system and the experimental results of the autonomous navigation are presented in this paper.

  • PDF

Study on Technical Standard of Aviation GNSS for SBAS Performance Based Navigation (SBAS 성능기반 항행을 위한 항공용 GNSS 기술표준 분석 연구)

  • Park, Jae-ik;Lee, Eunsung;Heo, Moon-beom;Nam, Gi-wook
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.4
    • /
    • pp.305-313
    • /
    • 2016
  • International Civil Aviation Organization (ICAO) has recommended the adoption of performance-based navigation (PBN), which utilizes global navigation satellite system (GNSS). As a part of efforts to adopt PBN in South Korea, preparations have been made to implement GNSS. In Oct. 2014, Korea augmentation satellite system (KASS) was officially launched for development. A set of navigation devices need to be on-board for an airplane to utilize GNSS. GNSS navigation devices are used for different phases of flights through en-route, terminal, departure, approach and a wide variety of specification standards have been proposed for GNSS navigation. In this paper, we investigate the many proposed standards for GNSS navigation devices and their interfaces. This paper can be useful for designing procedures and flight test used in KASS implementation.

Evaluation of Navigation System Performance of GPS/GLONASS/Galileo/BeiDou/QZSS System using High Performance GNSS Receiver

  • Park, Yong-Hui;Jeong, Jin-Ho;Park, Jin-Mo;Park, Sung-Hyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.333-339
    • /
    • 2022
  • The satellite navigation system was developed for the purpose of calculating the location of local users, starting with the Global Positioning System (GPS) in the 1980s. Advanced countries in the space industry are operating Global Navigation Satellite System (GNSS) that covers the entire earth, such as GPS, GLONASS, Galileo, and BeiDou, by establishing satellite navigation systems for each country. Regional Navigation Satellite Systems (RNSS) such as QZSS and NavIC are also in operation. In the early 2010s, only GPS and GLONASS could calculate location using a single system for location determination. After 2016, the EU and China also completed the establishment of GNSS such as Galileo and BeiDou. As a result, satellite navigation users can benefit from improved availability of GNSS. In addition, before Galileo and BeiDou's Full Operational Capability (FOC) declaration, they used combined navigation algorithms to calculate the user's location by adding another satellite navigation system to the GPS satellites. Recently, it may be possible to calculate a user's location for each navigation system using the resources of a single system. In this paper, we evaluated the performance of single system navigation and combined navigation solutions of GPS, GLONASS, Galileo, BeiDou and QZSS individual navigation systems using high-performance GNSS receivers.

Ionospheric Model Performance of GPS, QZSS, and BeiDou on the Korean Peninsula

  • Serim Bak;Beomsoo Kim;Su-Kyung Kim;Sung Chun Bu;Chul Soo Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.2
    • /
    • pp.113-119
    • /
    • 2023
  • Satellite navigation systems, with the exception of the GLObal NAvigation Satellite System (GLONASS), adopt ionosphere models and provide ionospheric coefficients to single-frequency users via navigation messages to correct ionospheric delay, the main source of positioning errors. A Global Navigation Satellite System (GNSS) mostly has its own ionospheric models: the Klobuchar model for Global Positioning System (GPS), the NeQuick-G model for Galileo, and the BeiDou Global Ionospheric delay correction Model (BDGIM) for BeiDou satellite navigation System (BDS)-3. On the other hand, a Regional Navigation Satellite System (RNSS) such as the Quasi-Zenith Satellite System (QZSS) and BDS-2 uses the Klobuchar Model rather than developing a new model. QZSS provides its own coefficients that are customized for its service area while BDS-2 slightly modifies the Klobuchar model to improve accuracy in the Asia-Pacific region. In addition, BDS broadcasts multiple ionospheric parameters depending on the satellites, unlike other systems. In this paper, we analyzed the different ionospheric models of GPS, QZSS, and BDS in Korea. The ionospheric models of QZSS and BDS-2, which are based in Asia, reduced error by at least 25.6% compared to GPS. However, QZSS was less accurate than GPS during geomagnetic storms or at low latitude. The accuracy of the models according to the BDS satellite orbit was also analyzed. The BDS-2 ionospheric model showed an error reduction of more than 5.9% when using GEO coefficients, while in BDS-3, the difference between satellites was within 0.01 m.