• Title/Summary/Keyword: Glucose

Search Result 10,910, Processing Time 0.536 seconds

Application of cabbage Peroxidase for Glucose Assay (양배추 Peroxidase의 포도당 분석에의 이용)

  • Park, In-Shik;Kho, Sun-Ok;Nam, in
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.19 no.3
    • /
    • pp.224-228
    • /
    • 1990
  • Cabbage contained high peroxidase activity among tested plant sources. The cabbage peroxi-dase can replace horseradish peroxidase to assay glucose with glucose oxidase. The amount of glucose can be determined quantitatively by glucose oxidase-cabbage peroxidase. The opti-mum pH and temperature for enzymatic glucose determination by glucose oxidase-cabbage peroxidase were 6.0 and 35-45$^{\circ}C$ respectively. The glucose assay was inhibited by addition of various metal salts such as mercuric chloride lead acetate silver nitrate ammonium molyb-date sodium tunstate and cupric sulfate. The relationship between absorbance and amount of glucose was linear up to 8.33 mM glucose in the assay mixture under the assay conditions.

  • PDF

Glucose Control in Intensive Care Unit Patients: Recent Updates (중환자의 혈당 조절: 최신 업데이트)

  • Rhee, Sang Youl
    • Journal of Neurocritical Care
    • /
    • v.11 no.2
    • /
    • pp.81-85
    • /
    • 2018
  • Proper glucose management in hospitalized patients can improve clinical outcomes. In particular, intensive care unit (ICU) patients are known to have significantly higher rates of mortality from changes in blood glucose due to severe comorbidities. Improving glucose control in ICU patients, therefore, can improve mortality and prognosis. Several studies related to the management of blood glucose in the ICU patients have been conducted. Intensive glucose management of surgical ICU patients has been successful. However, studies on medical ICU patients did not demonstrate positive effects of strict glycemic control. There is no independent glucose management goal for neurological ICU patients. However, maintenance of the usual glucose control target of 140-180 mg/dL is recommended for ICU patients. Intravenous insulin infusion is essential for glucose control in ICU patients not consuming a regular diet, and caution should be exercised to prevent hypoglycemia.

Development of Eco-friendly Paper Glucose Sensor Using Printing Technology (인쇄 기술을 이용한 친환경 종이 혈당 센서 스트립 개발)

  • Lee, Young Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.116-120
    • /
    • 2020
  • In this paper, we developed an electrochemical glucose sensor strip using a paper substrate. The paper glucose sensor strip is eco-friendly because it uses paper as a substrate, and it has the advantage that it can be manufactured only with four printing, drying and cutting processes. The paper glucose sensor is significantly simplified by the production process than the conventional glucose sensors because the production of only four printing on the paper substrate. In this paper, eco-friendly tracing paper was used to develop a paper glucose sensor strip, and screen-printing technology was used to form a carbon/silver electrode, insulating layer and glucose oxidase(GOD) layer. The developed paper glucose sensor strip has a flat structure with a size of 30 × 4.6 ㎟, and blood injection is a type of direct contact with the exposed enzyme layer above the strip. In this paper, the performance of paper glucose sensor strips was evaluated by analyzing the cyclic voltammetry(CV) and chronoamperometry(CA) characteristics.

Production of High Concentration Cellulose by Acetobacter xylinum BRC5 in Fed-Batch Culture (Acetobacter xylinum BRC5의 fed-batch 배양에 의한 셀룰로오스의 고농도 생산)

  • 황정숙;이창승;박상훈;양영국;변유량
    • KSBB Journal
    • /
    • v.14 no.3
    • /
    • pp.284-290
    • /
    • 1999
  • Glucose fed-batch culture was studied to improve cellulose productivity by Acetobacter xylinum BRC5. When initial glucose concentrations in batch cultures were less than 20 g/L, yield coefficients of cellulose (Yp/s) remained a constant value of 0.21 g cellulose/g glucose. But a low yield coefficient, Yp/s=0.13 was obtained from an initial glucose concentration of 40 g/L. Since initial high glucose concentrations in batch culture resulted in low yields of cellulose, constant fed-batch cultures were carried out. The optimal feed rate for fed-batch culture was 2.22 g glucose/L.h. In constant fed-batch culture without DO control, 10 g/L of cellulose was obtained from 40 g/L of glucose with this feed rate, which was approximately two fold higher than that of the batch culture with the same initial glucose concentration. In DO stat plus fed-batch culture, the highest cellulose productivity could be obtained when dissolved oxygen level was controlled at 10% of air saturation, and cellulose productivity increased about 1.5 times compared with that of the culture without DO control.

  • PDF

Effects of Glucose and Inorganic Phosphate on the Development of Rat 8-Cell Embryos In Vitro (Glucose와 Inorganic Phosphate가 Rat 8-세포기 난자의 체외배양에 미치는 영향)

  • 이홍미;진동일
    • Korean Journal of Animal Reproduction
    • /
    • v.20 no.3
    • /
    • pp.251-258
    • /
    • 1996
  • This study was designed to evaluate the potential inhibitory effects of glucose (5.56 mM vs. 0 mM) and/or phosphate (potassium phosphate, 1.19 mM vs. 0 mM) on the in vitro devel-opment of rat 8-cell embryos (n=345 embryos from 36 mature rats). Evaluation of embryos at 48 h for developmental stage (STG) indicated that 37% (31/84), 70% (64/91), 69% (59/85), and 77% (67/85) developed to the blastocyst stage in media with glucose+phosphate, glucose only, phosphate only, and no glucose or phosphate, respectively. Embryo development (2.90${\pm}$0.097 for STG) in medium with glucose + phosphate was significantly reduced (P<0.001), while no significant differences were observed between all other media (3.4~3.5${\pm}$0.093-0.097 for STG). Evaluation of embryos for final cell number (FCN) indicated that the greatest number of cells (nuclei) resulted in medium with glucose alone (29.3${\pm}$0.97 cells, P<0.001). No significant differences were observed for FCN for the remaining three media (l7.5${\pm}$1, 04 cells, 18.6${\pm}$1.Ol cells, and 19.8${\pm}$1.01 cells for glucose+phosphate, phosphate only, and no glucose or phosphate, respectively). Our results suggest that glucose and phosphate together exert an inhibitory effect on 8-cell rat embryo development, while glucose alone was beneficial, yielding greater numbers of cells per embryo.

  • PDF

Effects of glucose on metabolism and Insulin-like growth factor binding-3 expression in human fibroblasts. (사람의 섬유아세포에서 glucose 농도가 물질대사 및 Insulin-like growth factor binding protein-3의 발현에 미치는 영향)

  • Ryu, Hye-Young;Hwang, Hye-Jung;Kim, In-Hye;Ryu, Hong-Soo;Nam, Taek-Jeong
    • Journal of Life Science
    • /
    • v.17 no.5 s.85
    • /
    • pp.687-693
    • /
    • 2007
  • Insulin-like growth factor-I(IGF-I) has significant insulin-like anabolic effects which include the stimulation of glucose and amino acid uptake, as well as protein and glycogen synthesis. IGFs exist in serum and other biological fluids as complexes bound to a family of structurally related insulin-like growth factor binding proteins(IGFBPs). Six human IGFBPs can modulate the effects of IGFs on target tissues by several mechanisms, including altering the serum's half-life and the transcapillary transport of IGFs, as well as changing the availability of IGFs to specific cell surface receptors. Human fibroblasts secrete IGFBPs that can modify IGF-I action. Previous to our study using either Northern blotting, and Western blotting have shown that fibroblasts express mRNA IGFBP-3, -4, and -5, and synthesize these proteins. In addition, fibroblast cell lysates revealed that the IGFBP-3 was most abundant. For these reasons, we undertook to gain further insight into the effects of high and low glucose incubation condition on metabolism and IGFBP-3 expression. In results of metabolites and IGFBP-3 expression in GM10 cells cultivated with various glucose concentration, the consumption of glucose and accumulation of triglyceride were increased in condition of high glucose, and total protein level was decreased. in the course of time. After 5 days incubation, levels of free amino acid in medium containing glucose of high concentration glucose were higher than in conditions of low glucose. Although the levels of IGFBP-3 protein and mRNA levels were increased in low glucose, and IGFBP-3 was not affected by any pretense. Taken together, we suggest that the study of growth factors, like IGFs, might be a possible model of diabetes militus in cell, although the results in cell models were not in accord with in vivo.

Rheological Behavior of Sweet Potato Starch-Glucose Composites

  • Cho, Sun-A;Yoo, Byoung-Seung
    • Food Science and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.417-420
    • /
    • 2008
  • Rheological properties of sweet potato starch (SPS)-glucose composites (5%, w/w) at different concentrations (0, 10, 20, and 30%, w/w) of glucose were investigated in steady and dynamic shear. The steady shear rheological properties of SPS-glucose composites were determined from rheological parameters for power law and Casson flow models. At $25^{\circ}C$ all the samples showed a pronounced shear-thinning behaviors (n=0.29-0.37) with high Casson yield stress. In general, the presence of glucose resulted in the decrease in consistence index (K), apparent viscosity (${\eta}_{a,100}$), and yield stress (${\sigma}_{oc}$). Storage (G') and loss (G") moduli increased with an increase in frequency ($\omega$), while complex viscosity (${\eta}*$) decreased. Dynamic moduli (G', G", and ${\eta}*$) of the SPS-glucose composites at higher glucose concentrations (20 and 30%) were higher than those of the control (0% glucose) and also increased with increasing glucose concentration from 10 to 30%. The effect of glucose on steady and dynamic shear rheological properties of the SPS pastes appears to greatly depend on glucose concentration in the range of 10-30%.

Isolation of Intestinal Glucose Uptake Inhibitor from Punica granatum L.

  • Kim, Hye-Kyung;Baek, Soon-Sun;Cho, Hong-Yon
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.2
    • /
    • pp.135-141
    • /
    • 2011
  • Inhibition of intestinal glucose uptake is beneficial in reducing the blood glucose level for diabetes. To search for an effective intestinal glucose uptake inhibitor from natural sources, 70 native edible plants, fruits and vegetables were screened using Caco-2 cells and fluorescent D-glucose analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-D-glucose (2-NBDG). A compound that was able to inhibit glucose uptake was isolated from methanol extract of Punica granatum L. and called PG-1a. PG-1a appears to be a phthalic acid-diisononyl ester- like compound (PDE) with molecular weight of 418. The inhibitory effect of PG-1a on intestinal glucose uptake was dose-dependent with 89% inhibition at $100\;{\mu}g$/mL. Furthermore, the intestinal glucose uptake inhibitory effect of PG-1a was 1.2-fold higher than phlorizin, a well known glucose uptake inhibitor. This study suggests that PG-1a could play a role in controlling the dietary glucose absorption, and that PG-1a can effectively improve the diabetic condition, and may be used as an optional therapeutic and preventive agent.

Effect of Maltitol on Blood Glucose and Insulin Responses in Normal and Diabetic Subjects (정상인과 당뇨병 환자에 있어서 Maltitol 경구 투여가 혈당과 혈액내 insulin농도 변화에 미치는 영향)

  • 문수재
    • Journal of Nutrition and Health
    • /
    • v.23 no.4
    • /
    • pp.270-278
    • /
    • 1990
  • This study was an attempt to investigate the usefulness of maltitol as an alternative sweetener. The acute effects of oral ingestion of 50g of maltitol or glucose on blood glucose and insulin levels following test dose were investigated by using five healthy normal subjects and ten diabetic patients. The data demonstrated marked differences between the utilization of maltitol and of glucose in both groups. Blood glucose and insulin responses to glucose were significantly greater than to maltitol in normal subjects(p<0.05). In diabetic patients, the peaks of the mean increment in blood glucose concentration after glucose and maltitol were reached at 60 minutes with mean values of 135mg/dl and 49mg/dl, respectively, and these differences were statistically significant(p<0.001). As for blood insulin responses in diabetic patients, the peak of the mean increment after glucose was 25.03$\mu$U/ml at 120 minutes. In contrast insulin responses to maltitol were significantly lower than to glucose(p<0.05), and the peak value was 7.98$\mu$u/ml at 60min. From these results it can be concluded that ingestion of maltitol resulted in significantly lower blood glucose and insulin increments than did glucose in both normal and diabetic patients.

  • PDF

Identification of Water Soluble Metabolites of Pentachlorophenol(PCP) in the Suspension Cultures of Soybean and Rice Cells;2. Isolation and characterization of PCP glucose conjugates (콩과 벼 현탁배양시(懸濁培養時) PCP 수용성대사물(水溶性代謝物)의 동정(同定);2. PCP glucose conjugates의 분리(分離) 및 분석(分析))

  • Kim, Pil-Je;Park, Chang-Kyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.1
    • /
    • pp.37-45
    • /
    • 1996
  • Abstracts From the previous metabolic study of Pentachlorophenol(PCP), PCP was found to be exclusively transformed into ${\beta}-glucose$ conjugates of PCP in soybean and rice cell suspension cultures. In order to gather structural information of of the glucose conjugate, their aglycons and glycon have been analyzed by GC and GC/MS respectively, after thorough purification by chromatographic techniques. The glucose conjugates were effectively purified through a 1-butanol extraction followed by Silica gel TLC, Sephadex column chromatography and HPLC. Aglycons of the metabolites were identified as PCP, isomeric mixture of tetrachlorophenol, and tetrachlorocatechol and glycon were identified as glucose, suggesting that there are at least three kinds of glucose conjugates with different phenolic moieties. Under controlled conditions, the glucose conjugates were separated into three HPLC peaks which released respective aglycon upon a hydrolytic treatment. These results give valuable information on the structure of the glucose conjugates such that some PCP-driven chlorophenols, in addition to PCP, are also conjugated with glucose.

  • PDF