• 제목/요약/키워드: Glutathione peroxidase1

검색결과 726건 처리시간 0.03초

Effect of Garlic on the Hepatic Glutathione S-Transferase and Glutathione Peroxidase Activity in Rat - garlic effect on the glutathione S- transferase and glutathione peroxidase

  • Huh, Keun;Park, Jong-Min;Lee, Sang-Il
    • Archives of Pharmacal Research
    • /
    • 제8권4호
    • /
    • pp.197-203
    • /
    • 1985
  • It was attempted to observe the effect of garlic on the hepatic glutathione s-transferase and glutathione peroxidase activity in this study. Glutathione s-transferase (EC 2.5.1.18) are thought to play a physiological role in initiating the detoxication of potential alkylating agents, inclnding pharmacologically active compounds. Glutathione peroxidase (EC 1. 11. 1. 9) might play an important role in the protection of cellular structures against oxidative challenge. The activities of glutathione s-transferase and glutathione peroxidase in rat liver were increased by the treatment of garlic juice. Allicin fraction, heat-treated allicin fraction and garlic butanol fraction markedly inhibited glutathione s-transferase activity in vitro, whereas glutathione peroxidase activity was significantly increased in heat-treated allicin fraction and garlic butanol fraction.

  • PDF

카드뮴에 중독된 웅성 흰 쥐의 간, 신장 및 고환의 Glutathione Peroxidase, Glutathione Reduetase, and Glutathione-s-Transferasea의 활성도와 부추의 효과 (The Glutathione Peroxidase, Glutathione Reductase and Glutathione-s-Transferase Activity in Liver, Kidney and Testes of Male Rats Intoxicated by Cadmium Chloride and Effect of Leek(Allium Odorum L. ))

  • 안령미
    • 한국환경보건학회지
    • /
    • 제18권1호
    • /
    • pp.76-83
    • /
    • 1992
  • Effect of freeze drying leek against cadmium poisoning on glutathione peroxidase, on glutathione reductase and on glutathione-s-transferase in liver, kidney and testes of the male rats during the administered period. In this experiment, male rats of Sprague-Dawley strain were used. The rats which were fed for 15 weeks were divided into 4 groups basal diet 3% leek added diet basal diet and cadmium in water and 3% leek added diet and cadmium in water. Cadmium was administered ad libitum 100ppm CdCl$_{2}$ in distilled water. The followings are the result of this experiment. 1. Leek enhanced the glutathione peroxidase activities which were reduced by cadmium treatment in liver, kidney and testes but not significance. 2. Leek reduced glutathione reductase activities which were incresed by cadmium in liver, kidney and testes. 3. Leek incresed the activities of glutathfone-s-transferase in liver but not in kidney and but not in testes. 4. Leek incresed glutathione concentration which was decresed by cadmium treatment in liver and kidney but not testes. This experiment showed that leek-addition group had protective effect against cadmium poisoning and alleviated GR and glutathione-s-transferase activities in tissues. Leek incresed activities of glutathione peroxidase in liver, kidney and testes but not significance. Therefore, this experiment concluded that leek defensive power against long term cadmium poisoning.

  • PDF

Adriamycin이 생쥐 심근 미세구조 및 Glutathione-Glutathione Peroxidase계에 미치는 영향 (Effects of Adriamycin on Cardiac Ultrastructure and Glutathione-Glutathione Peroxidase System in Mouse)

  • 박원학;정형재;김쌍용;이용덕;최정목
    • Applied Microscopy
    • /
    • 제19권2호
    • /
    • pp.99-118
    • /
    • 1989
  • The cardiotoxic effects of acute and chronic administration of adriamycin (ADR) were evaluated in A/J Swiss albino mice. In acute studies, male mice received intravenous ADR, 5mg or 15mg/kg per day for 3 or 1day and were sacrifice 12 hours later. Because the glutathione-glutathione peroxidase system is major pathway for free radical detoxication, glutathione levels and glutathione peroxidase activity was measured. In acute studies, ADR-treated mice exhibited significantly decreased levels(p<0.05) of total glutathione and unchanged levels of oxidized glutathione and percentage of oxidized glutathione. The earliest myocardial fine structural alterations included swelling and degeneration of mitochondria and dilatation of sarcoplasmic reticulum at all dosage of acute models. In chronic studies, mice received 5mg/kg ADR once a week for up to 16 weeks. Levels of total and reduced glutathione were decreased significantly(p<0.01) and oxidized glutathione and percentage of oxidized glutathione were increased significantly (p<0.05). Chronic myocardial lesions included perinuclear vacuolization, seperation of myofibrils and the fasciae adherens of intercalated disc and hypercontraction band within myocyte. Glutathione peroxidase activity reduced significantly (p<0.01) in any group of acute and chronic ADR-treated animals. Test for lipid peroxidation(malondialdehyde) was increased significantly(P<0.01). Thus, we conclude 1) ADR significantly lowers glutathione levels in heart tissue, and 2) cellular damage progress produced by alteration of this system in mouse models of ADR cardiotoxicity. These results suggest that the glutathione-glutathione peroxidase system may be involved in the modulation of ADR-induced cardiotoxicity.

  • PDF

한우 무손상 적혈구의 superoxide 및 과산화수소 제거능력 (Scavenge of superoxide and hydrogen peroxide by bovine intact red blood cells)

  • 조종후;박상열
    • 대한수의학회지
    • /
    • 제38권2호
    • /
    • pp.273-279
    • /
    • 1998
  • The ability of bovine intact red blood cells to scavenge superoxide and hydrogen peroxide by superoxide dismutase, catalase and glutathione peroxidase was investigated. Intact red cells(up to 0.4%) suspensions did not inhibit ferricytochrome c reduction by superoxide in the superoxide generating system. On the other hand, intact red cell(0.4%) suspensions almost completely inhibit ferrocytochrome c oxidation by hydrogen peroxide. The ability of intact red cells to scavenge hydrogen peroxide was mainly attributed to either membrane bound catalase or glutathione peroxidase. The scavenge of hydrogen peroxide by 0.1~0.2% intact red cells showed a trend of dependence on mainly glutathione peroxidase. However, at blood cell concentration higher than 0.3%, the process depended upon peroxidase-independent scavengers like catalase. Enhancement of ferrocytochrome c oxidation by red cells treated with aminotriazole proved that the protection against hydrogen peroxide was due to catalase, while the protection in the presence of glutathione indicated scavenging effect of glutathione peroxidase against hydrogen peroxide.

  • PDF

흰쥐 적혈구에 있는 Glutathione Peroxidase의 순화 및 성질과 간에서의 용작부위에 대한 조직화학적 연구 (Purification and Characterization of Glutathione Peroxidase Isolated from Rat Erythrocyte and Histochemical Study of its Localization in Liver of White Rat)

  • 최임순;최춘근
    • 한국동물학회지
    • /
    • 제29권2호
    • /
    • pp.141-158
    • /
    • 1986
  • 흰쥐를 실험재료로 그 적혈구에서 glutathione peroxidase를 $(NH_4)_2SO_4$ 침전법, Sephadex filtration column, DEAE-sephadex column chromatogrgphy하여 순화시키고 이것의 성질을 연구하였으며, 간에서 이 효소의 작용부위를 조직화학적 처리를 하여 전자현미경으로 관찰한 결과는 다음과 같다. 1. Glutathione peroxidase는 약 33.5배 순화되었다. 2. Crude glutathione peroxidase의 최적온도는 $40^\\circC$이며, 반응 최적 pH는 7.5였다. 3. 이 효소는 $30^\\circC$에서 가장 안정되었으며 glutathione농도 변화에 대한 Km값은 8.5 mM, 최대 반응속도는 15.6 $\\mu$moles/min이었고, $H_2O_2$ 농도변화에 대한 Km값은 40 $\\mu$M이며, 최대 반응속도는 10.5 $\\mu$moles/min이었다. 4. 이 효소의 분자량은 약 90,000정도로 측정되었다. 5. 쥐의 간에서 이 효소의 활성부위는 microbody에 국한되며 간소염의 주변주에서 그 활성이 크게 나타났다. 6. 조직화학적 방법으로 나타난 반응산물은 직경 $2.0\\sim0.7 \\mum$ 정도의 원형으로 그 경계막은 뚜렷하지 않았다.

  • PDF

HepG2 세포의 산화적 손상에 대한 산삼 추출물의 보호효과 - DNA chip을 이용하여 -

  • 김형석;박희수;권기록
    • 대한약침학회지
    • /
    • 제10권1호통권22호
    • /
    • pp.121-135
    • /
    • 2007
  • Objectives : This study was carried out to examine protective effect of wild ginseng extract on HepG2 human hepatoma cell line against tert-Butyl hydroperoxide (t-BHP)-induced oxidative damage. Methods : To evaluate protective effect of wild ginseng extract against t-BHP induced cytotoxicity, LDH level and activity of glutathione peroxidase and reductase were measured. Gene expression was also measured using DNA microarray. Results : Wild ginseng extract showed a significant protective effect against t-BHP-induced cytotoxicity in HepG2 cell line. It is not, however, related with the activities of glutathione peroxidase and glutathione reductase. Analysis of gene expression using DNA chip, demonstrated that 28 genes were up-regulated in t-BHP only group. Five genes - selenoprotein P, glutathione peroxidase 3, sirtuin 2, peroxiredoxin 2, serfiredoxin 1 homolog - may be related with the protective effect of wild ginseng extract. Conclusions : Based on the results, a protective effect of wild ginseng extract against t-BHP-induced oxidative damage in HepG2 cell line is not associated with the activities of glutathione peroxidase and glutathione reductase, but with the expression of selenoprotein P, glutathione peroxidase 3, sirtuin 2, peroxiredoxin 2, and serfiredoxin 1 homolog.

전북지역 한우의 red cell fragility와 glutathione peroxidase활성에 관한 연구 (Studies on red cell fragility and glutathione peroxidase activities in Korean native cattle of Chonbuk region)

  • 조종후;이성희
    • 대한수의학회지
    • /
    • 제30권3호
    • /
    • pp.271-275
    • /
    • 1990
  • The tests related to red cell fragility were performed. Samples of blood anticoagulated with heparin were obtained from Korean native cattle in Chonbuk region abattoir, and classified by the district(Kun) with reference to breeding location. Hemolysis test for red cell fragility was performed with whole blood and glutathione peroxidase activity was measured spectrophotometrically. Blood concentration of selenium, inorganic component of glutathione peroxidase, was also determined fluorophotometrically. The results obtained were summerized as follows; 1. Percent hemolysis of erythrocytes ranged from 13.53 to 20.74%, and its mean Palue was low as $17.11{\pm}9.91%$. Means in all were not district(Kun) in Chonbuk region significantly different. 2. Glutathione peroxidase activity ranged from 2,881 to 4,000mU/ml, and high mean values, $3,352{\pm}1,872mU/ml$, reflected low percent hemolysis. 3. There was a highly negative correlation between the red cell fragility(Y) and blood glutathione peroxidase activity(X). The linear regression equation for these data was: Y=29.86-3.75X with a correlation coefficient of r=-.6886 (p<0.01) 4. Blood selenium concentration ranged from 0.16 to $0.24{\mu}g/ml$, and mean values was normal level as $0.2{\pm}0.11{\mu}g/ml$. 5. There was a highly positive correlation between blood selenium concentration(X), and blood glutathione peroxidase activity(Y). The linear regression for these data was: Y=230+15,790X, with a correlation coefficient officient of r=0. 8635.

  • PDF

Zinc and Selenium Requirements for Glutathione Peroxidase Activity and Cell Survival in Chinese Hamster Ovary Cells Overexpressing Metallothionein

  • Kwun, In-Sook;John R. Arthur;John H. Beattie
    • Preventive Nutrition and Food Science
    • /
    • 제8권1호
    • /
    • pp.36-39
    • /
    • 2003
  • Many defined cell culture media were formulated over 3() years ago and may be deficient in certain micronutrients whose essentiality has only subsequently been recognised. The objective of this study was to evaluate whether alpha-minimal essential medium (MEM) supplemented with 10% foetal bovine serum contained sufficient selenium for optimal activity of the selenium containing enzymes cytosolic glutathione peroxidase (cGPx) and phospholipid hydroperoxide glutathione peroxidase (PHGPx) in cultured Chinese hamster ovary (CHO) cells. Additionally, the effect of zinc deficiency and metallothionein (MT) overexpression on cGPx and PHGPx activity was studied. The addition of 100 nM of selenous acid to the culture medium increased cGPx expression by 10-fold and PHGPx by about 2-fold in both wild-type CHO-K1 cells and CHO-K1 cells overexpressing mouse MT-1. Zinc deficiency had no significant effect on enzyme activity, but cells overexpressing mouse MT-1 had higher levels of cGPx activity. Zinc deficiency decreased cell survival but overexpression of MT-1 was partially protective, probably because its presence in quantity favoured the uptake, sequestration and cellular retention of any remaining zinc. This study demonstrates that selenium in complete alpha-MEM is insufficient for optimal cGPx and PHGPx activity and may compromise the cellular response to oxidative stress.

$Saccharomyces$ $cerevisiae$에서 $N$-acetyl-L-cysteine 처리와 감마선 조사에 따른 Glutathione Peroxidase 유전자 발현 (Gene Expression of Glutathione Peroxidase in $Saccharomyces$ $cerevisiae$ Treated with $N$-acetyl-L-cysteine and Gamma-rays)

  • 박지영;백동원;모하마드닐리;김진규
    • 환경생물
    • /
    • 제29권4호
    • /
    • pp.258-264
    • /
    • 2011
  • Glutathione (GSH)은 직접적으로 활성산소종을 제거하거나 GSH peroxidase와 같은 활성산소종 제거 효소의 조효소로써, 산화적 스트레스로부터 세포를 방어하는 데 중요한 역할을 한다. GSH peroxidase는 두 분자의 GSH을 이용해 세포 내 과산화수소를 물로 전환한다. $N$-acetyl-L cysteine (NAC)는 항산화제 중 하나로 세포 내 GSH의 전구물질로 이용된다. 본 연구는, 0mM에서 20mM의 NAC 단독 처리 또는 100 Gy 감마선과 복합 처리한 효모세포에서 GSH peroxidase를 코드화(encoding)하는 유전자인 $GPX1$$GPX2$의 전사적 발현을 통해 GSH, NAC와 GSH peroxidase의 연관성을 알아보았다. $GPX1$$GPX2$의 전사적 발현은 NAC와 100 Gy 감마선에 의해 유도되었다. 조사된 효모세포에서 NAC의 증가 농도에 따라 GSH peroxidase 두 유전자의 발현은 감소되었다. 이러한 결과로, NAC에 의해 증가된 세포 내 GSH는 GSH peroxidase 유전자의 전사적 발현을 유도하며, NAC는 감마선으로부터 생성된 활성산소종 직접적 제거와 GSH peroxidase 유전자의 전사적 발현을 유도함으로써 세포를 보호할 수 있다는 것이 밝혀졌다.

Methylglyoxal-Scavenging Enzyme Activities Trigger Erythroascorbate Peroxidase and Cytochrome c Peroxidase in Glutathione-Depleted Candida albicans

  • Kang, Sa-Ouk;Kwak, Min-Kyu
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권1호
    • /
    • pp.79-91
    • /
    • 2021
  • γ-Glutamylcysteine synthetase (Gcs1) and glutathione reductase (Glr1) activity maintains minimal levels of cellular methylglyoxal in Candida albicans. In glutathione-depleted Δgcs1, we previously saw that NAD(H)-linked methylglyoxal oxidoreductase (Mgd1) and alcohol dehydrogenase (Adh1) are the most active methylglyoxal scavengers. With methylglyoxal accumulation, disruptants lacking MGD1 or ADH1 exhibit a poor redox state. However, there is little convincing evidence for a reciprocal relationship between methylglyoxal scavenger genes-disrupted mutants and changes in glutathione-(in)dependent redox regulation. Herein, we attempt to demonstrate a functional role for methylglyoxal scavengers, modeled on a triple disruptant (Δmgd1/Δadh1/Δgcs1), to link between antioxidative enzyme activities and their metabolites in glutathione-depleted conditions. Despite seeing elevated methylglyoxal in all of the disruptants, the result saw a decrease in pyruvate content in Δmgd1/Δadh1/Δgcs1 which was not observed in double gene-disrupted strains such as Δmgd1/Δgcs1 and Δadh1/Δgcs1. Interestingly, Δmgd1/Δadh1/Δgcs1 exhibited a significantly decrease in H2O2 and superoxide which was also unobserved in Δmgd1/Δgcs1 and Δadh1/Δgcs1. The activities of the antioxidative enzymes erythroascorbate peroxidase and cytochrome c peroxidase were noticeably higher in Δmgd1/Δadh1/Δgcs1 than in the other disruptants. Meanwhile, Glr1 activity severely diminished in Δmgd1/Δadh1/Δgcs1. Monitoring complementary gene transcripts between double gene-disrupted Δmgd1/Δgcs1 and Δadh1/Δgcs1 supported the concept of an unbalanced redox state independent of the Glr1 activity for Δmgd1/Δadh1/Δgcs1. Our data demonstrate the reciprocal use of Eapx1 and Ccp1 in the absence of both methylglyoxal scavengers; that being pivotal for viability in non-filamentous budding yeast.