• 제목/요약/키워드: Gluteus maximus and Biceps femoris

검색결과 40건 처리시간 0.025초

The Effect of Standing and Kneeling Postures on Muscle Activity for Squat

  • Jeong, Taewoong;Chung, Yijung
    • Physical Therapy Rehabilitation Science
    • /
    • 제10권4호
    • /
    • pp.487-492
    • /
    • 2021
  • Objective: This study aimed to identify the effects of assuming two types of posture (standing and kneeling) during squat exercise on lower body muscle activity. Design: Cross-sectional study Methods: Twenty-five healthy adults (18 men and 7 women) were instructed to perform the squat exercises while assuming two types of posture (standing and kneeling). EMG (Electromyography) data (% maximum voluntary isometric contraction) were recorded three times from the rectus femoris (RF), gluteus maximus (GMax), gluteus medius (GMed) and biceps femoris (BF) of participant's dominant side and the mean values were analyzed. Results: During the squat exercise with all postures, there was statistically significant difference on rectus femoris, gluteus maximus, gluteus medius, and biceps femoris muscle activity (p<0.05). The results showed that, there was significantly greater rectus femoris, gluteus medius, and biceps femoris muscle activity in standing posture than in kneeling position (p<0.05). However, the gluteus maximus muscle activity was significantly greater with kneeling posture compared to standing posture (p<0.05). Conclusions: With standing posture, it is showed that rectus femoris, gluteus medius, and biceps femoris muscle activity was greater than kneeling position. While the gluteus maximus muscle activity with standing posture was less than with kneeling posture. Therefore, it is considered that this study can be used as a selective indicator of exercise posture for strengthening specific muscle or weakness caused by paralysis.

Effects of Different External Loads on the Activities of the Gluteus Maximus and Biceps Femoris during Prone Hip Extension in Healthy Young Men

  • Bae, Chang-Hwan;Choe, Yu-Won;Kim, Myoung-Kwon
    • 대한물리의학회지
    • /
    • 제15권2호
    • /
    • pp.1-9
    • /
    • 2020
  • PURPOSE: This study examined the effects of different external loads on the muscle activities around the hip during prone hip extension with knee flexion (PHEKF) exercise in healthy young men. METHODS: Sixteen healthy adult males participated in the study. A pressure biofeedback unit was used to provide feedback to the participants during the abdominal drawing-in maneuver (ADIM) with PHEKF. Sandbags (0 kg, 1 kg, 2 kg, and 3 kg) were used to provide external resistance. The quadriceps was contracted to maintain knee flexion 90° against resistance. Each resistance condition using a sandbag weight was given in random order. Surface electromyography (sEMG) was used to measure the electrical activity of the gluteus maximus, biceps femoris, and erector spinae during PHEKF. RESULTS: The muscle activity of the gluteus maximus was highest with the 3 kg resistance and lowest with 0 kg (F = 128.46, P = .00). The muscle activities of the biceps femoris and erector spinae were highest with 0 kg and lowest with 3 kg (F = 29.49, P = .00). The muscle activity rate of the gluteus maximus/biceps femoris was highest with 3 kg and lowest with 0 kg (F = 37.49, P = .00). CONCLUSION: The activity of the gluteus maximus was increased using a higher external weight load during PHEKF, while the activity of the biceps femoris decreased. These findings suggest that an external weight is needed during hip extensor exercise to strengthen the gluteus maximus and inhibit the biceps femoris.

엉덩관절 폄 시 무릎 굴곡 각도에 따른 큰볼기근과 뒤넙다리근의 근수축 개시시간 특성 (Muscle Contraction Onset Time Characteristics of Gluteus Maximus and Hamstring According to Knee Flexion Angles During Prone Hip Extension)

  • 김용욱;송제현;정연우;이경석;국가영;윤성준
    • PNF and Movement
    • /
    • 제18권3호
    • /
    • pp.375-382
    • /
    • 2020
  • Purpose: The purpose of this study was to investigate the muscle contraction onset time characteristics of the gluteus maximus, semitendinosus, and biceps femoris muscles at different knee flexion angles in individuals with shortened or over-lengthened hamstrings performing prone hip extension. Methods: Twenty-six participants were divided into a hamstring shortened group (n = 12) and hamstring lengthened group (n = 14). Wireless surface electromyography was used to verify the muscle onset time of the gluteus maximus, semitendinosus, and biceps femoris when performing prone hip extension at different knee flexion angles. Results: There were significant differences in the muscle onset times of the semitendinosus and biceps femoris between the hamstring shortened group and hamstring lengthened group (p < 0.05). In addition, there was a significant difference in the muscle contraction onset times among of the gluteus maximus, semitendinosus, and biceps femoris muscles when performing prone hip extension at a knee flexion of 90° in the hamstring shortened group (p < 0.05) and a knee flexion angle of 0° in the hamstring lengthened group (p < 0.05). Conclusion: In all groups, there was no effect on the onset time of the gluteus maximus muscle according based on the knee angle. In addition, the knee flexion angles affected the onset time of the muscle contraction of the gluteus maximus muscle in the hamstring shortened group and hamstring lengthened group with an abnormal length of the hamstring muscle.

The Effects of Ankle Joint Position on Hip Extensor Muscle Activity for Bridging Exercise in Sagittal Plane

  • Hyun Lee;Seungwon Lee
    • Physical Therapy Rehabilitation Science
    • /
    • 제12권2호
    • /
    • pp.149-154
    • /
    • 2023
  • Objective: This study is designed to investigate the effect of ankle joint position on hip extensor muscle activity when bridging exercise in sagittal plane. Design: Cross-sectional study Methods: The subjects were recruited from 20 healthy adult men. The subjects performed three types of bridging exercises (normal bridging, ankle dorsiflexion bridging, ankle plantar flexion bridging) three times for five seconds with a rest of 15 seconds between measurements and two minutes of rest between each motion. The target muscles were the gluteus maximus, biceps femoris, soleus, and tibialis anterior. A surface electromyography was used to measure the muscle activity of these muscles. Results: The results show there was no statistically significant difference between the three types of exercise in the gluteus maximus muscle activity. However, the biceps femoris showed a significant difference between the three types of exercises (p<0.05). Conclusions: In conclusion, when the three different bridging exercises were performed by adding ankle motion to normal bridging exercise, there was a significant difference in the muscle activity of the gluteus maximus relative to the biceps femoris muscle activity in the order of the ankle dorsiflexion bridging, normal bridging, and ankle plantar flexion bridging exercise. Therefore, this could be an effective option for a bridging exercise if applied to patients with a weak gluteal muscle and shortening of the hamstring muscle in further studies.

The Effects of Performing Bridge Exercise and Hip Thrust Exercise using Various Knee Joint Angles on Trunk and Lower Body Muscle Activation in Healthy Subjects

  • Kim, Dongsu;Jung, Jongchan;Chung, Yijung
    • Physical Therapy Rehabilitation Science
    • /
    • 제10권2호
    • /
    • pp.205-211
    • /
    • 2021
  • Objective: This study aimed to identify the effects of assuming different knee angles and hip abduction during bridge exercise and hip thrust exercise on lower body muscle activity. Design: Cross-sectional study Methods: Thirty-three healthy adults (18 men and 15 women) were instructed to perform the bridge and hip thrust exercises while randomly assuming 120°, 90° and 60° of knee flexion and 0° and 30° of hip abduction. EMG data (%maximum voluntary isometric contraction) were recorded three times from the erector spinae (ES), gluteus maximus (GM) and biceps femoris (BF) muscles of participant's dominant side and the mean values were analyzed. Results: The results showed that, during the hip thrust compared to the bridge exercise, there was significantly greater gluteus maximus muscle activity in all hip conditions while the biceps femoris activity was significantly less, and the erector spinae muscle activity was significantly greater with 30° of hip abduction (p<0.05). With all exercises, the erector spinae and the biceps femoris exhibited significantly greater muscle activity with 60° of knee flexion compared to 90° and 120° of knee flexion (p<0.05), and significantly greater muscle activity with 90° compared to 120° of knee flexion (p<0.05). In the case of the gluteus maximus, greater muscle activity was exhibited with 120° compared to 60° of knee flexion with all hip abduction conditions (p<0.05). Conclusions: It was effective for muscle activation of main agonists such as the gluteus maximus and erector spinae during thrust exercise, and the change in knee flexion angle was effective for muscle activation of the gluteus maximus. Therefore, it is considered that this study can be used as a selective indicator of the target movement angle during hip strengthening exercise for specific muscles.

엎드려 무릎관절 굽힘 자세에서 엉덩관절 폄 동작 시 무게 부하 변화에 따른 큰볼기근과 넙다리두갈래근의 두께 비교 (A Comparison of Gluteus Maximus Muscle and Biceps Femoris Muscle Thickness According to Weight Load during Prone Hip Extension with Knee Flexion Exercises)

  • 장은미;정다은
    • PNF and Movement
    • /
    • 제21권3호
    • /
    • pp.309-317
    • /
    • 2023
  • Purpose: This study set out to investigate the effects of prone hip extension with knee flexion (PHEKF) exercises according to external load on the thickness of the gluteus maximus (Gmax) and biceps femoris (BF). Methods: Twenty-three healthy men participated in this study. All subjects randomly practiced PHEKF under the burden of external loads created by sandbags (0 kg, 1 kg, and 2 kg). Rehabilitative ultrasound imaging (RUSI) was used to measure the thickness of the Gmax and BF during the PHEKF with different external loads. Results: The thickness of the Gmax was highest during the 2 kg resistance exercise and lowest at 0 kg. The thickness of the Gmax was significantly increased at 1 kg and 2 kg compared to 0 kg and significantly increased at from 1 kg to 2 kg (p < 0.05). The thickness of the biceps femoris was highest at 0 kg and lowest at 2 kg. The thickness of the biceps femoris muscle was significantly reduced at 1 kg and 2 kg compared to 0 kg (p < 0.05), but there was no significant difference between 1 kg and 2 kg (p > 0.05). Conclusion: The thickness of the Gmax was increased by applying PHEKF with a higher external load, whereas the muscle thickness of the biceps femoris decreased. These results suggest that the application of external loads during PHEKF exercises may be an effective method for selective strengthening of the Gmax.

Effects of the Abduction Resistance of the Hip Joint during Bridge Exercise in Patients with Chronic Back Pain: A Cross-Over Study

  • Kim, Dong-Hyun;Kim, Kyu-Ryeong;Bae, Chang-Hwan;Kim, Myoung-Kwon
    • 대한물리의학회지
    • /
    • 제17권3호
    • /
    • pp.1-10
    • /
    • 2022
  • PURPOSE: This study examined the effects of the resistance levels on the muscle activities around the hip and spine during bridge exercise with hip abduction resistance in patients with chronic back pain. METHODS: A cross-over study design was used. Twenty subjects with low back pain were enrolled in this study. The subjects performed bridge exercises with hip abduction resistances (20 mmHg, 40 mmHg, and 60 mmHg). A Narrow Sling was used to provide resistance. Surface electromyography was used to measure the activity of the erector spinae, biceps femoris, gluteus maximus, and gluteus medius. RESULTS: The muscle activity of the gluteus maximus and gluteus medius increased significantly with increasing resistance levels. There was a significant difference in the muscle activity of the biceps femoris with a resistance level between 20 mmHg and 40 mmHg, but there was no significant difference in the other resistance levels. There was no significant difference according to resistance level in the erector spinae. The muscle activity ratios of the gluteus medius/erector spinae and gluteus maximus/erector spinae increased significantly with increasing resistance strength. CONCLUSION: The different levels of abduction resistance for hip abduction during bridge exercise will help activate the gluteus maximus selectively in patients with chronic back pain.

골반압박벨트 착용이 한발서기 시 여성 천장관절통증 환자의 체간과 고관절 신전근 활성 양상에 미치는 영향 (Effects of Applying the Pelvic Compression Belt on the Trunk and Hip Extensor Electromyography Pattern in Female Patients With Sacroiliac Joint Pain During the One-Leg Standing)

  • 정희석;전혜선;이충휘;권오윤
    • 한국전문물리치료학회지
    • /
    • 제19권2호
    • /
    • pp.1-11
    • /
    • 2012
  • The pelvic compression belt (PCB) contributes to improving sacroiliac joint stability, and it has been used as an additional therapeutic option for patients with sacroiliac joint pain (SIJP). This study aimed to investigate whether the muscle activation patterns of the supporting leg was different between asymptomatic subjects and subjects with SIJP during one-leg standing, and how it changes with the PCB. 15 subjects with SIJP and 10 asymptomatic subjects volunteered to participate in this study. Surface electromyography (EMG) data (reaction time [RT] and muscle activation) were collected from the internal oblique, lumbar multifidius, gluteus maximus and biceps femoris muscles during one-leg standing with and without the PCB. Without the PCB condition, in the SIJP group, the biceps femoris muscle showed the fastest RT among all muscles (p<.05), whereas in the asymptomatic group, the RT of the internal oblique muscle was the most rapid (p<.05). In condition without the PCB, the biceps femoris EMG amplitudes in the SIJP group were significantly greater than that in the asymptomatic group (p<.05). After the application of the PCB, the RT of the biceps femoris muscle was significantly increased only in the SIJP group (p<.05). Moreover, the biceps femoris EMG amplitudes significantly decreased and the gluteus maximus EMG amplitudes significant increased only in the SIJP group by applying the PCB (p<.05). However, this had no such effect on the gluteus maximus and biceps femoris EMG patterns in the asymptomatic group (p>.05). Thus, this study supports the applying the PCB to patients with SIJP can be used as a helpful option to modify the activation patterns of the gluteus maximus and biceps femoris muscle.

Modifying a Back Endurance Test for Examining Erector Spine Muscles by Adding Lateral Trunk Bending and Trunk Rotation

  • Park, Se-Yeon;Park, Du-Jin
    • PNF and Movement
    • /
    • 제15권3호
    • /
    • pp.381-387
    • /
    • 2017
  • Purpose: Although some studies indicate that the Sorensen test may not be used to examine back muscles such as the erector spinae, alternatives to the back-extension test are rarely suggested. Therefore, the purpose of the present study was to investigate an effective way to stimulate the erector spinae muscles by adding a component of trunk rotation and lateral bending to general back extensions. Methods: A total of 18 healthy, physically active participants performed simple trunk extension, extension with trunk rotation, and extension with lateral bending. Surface electromyography responses of the latissimus dorsi, thoracic, and lumbar levels of the erector spinae; the gluteus maximus; and the biceps femoris muscles were investigated during these 3 conditions of modified back extension tests. Results: The simple trunk extension exercise caused significant increases in activity of the gluteus maximus and biceps femoris muscles as compared to the extension with rotation and lateral bending exercises. The extension with trunk rotation exercise showed significantly greater activation in the thoracic and lumbar levels of the erector spinae and in the latissimus dorsi as compared to the other exercises. The index measuring subjective difficulty was significantly lower in the simple trunk extension exercise as compared to the extension with trunk rotation and extension with lateral bending exercises. Conclusion: The present study suggests that extension with trunk rotation has the advantage of stimulating the para-spinal muscles, while simple trunk extension may not be adequate to selectively simulate the para-spinal muscles but may be appropriate for examining global trunk extensors.

Effect of Sprinter Pattern Bridging Exercise using Theraband on Activation of Lower Extremity and Abdominal Muscle

  • Kim, Gwanho;Yi, Donghyun;Yim, Jongeun
    • Physical Therapy Rehabilitation Science
    • /
    • 제10권3호
    • /
    • pp.244-250
    • /
    • 2021
  • Objective: The purpose of this study was to investigate the effect of sprinter pattern bridging exercise using theraband on activation of lower extremity and abdominal muscle and to find out postures that can effectively improve abdominal and lower extremity muscle strength and increase abdominal stability. Methods: This study was designed as a cross-sectional study. The following research was done with applicants attending S university in Seoul to compare the difference in muscle activity between one-leg-Support bridging exercise and sprinter-pattern bridging exercise using theraband. For 48 study participants, we first measured their MVC. Then, we applied one-leg-support bridging exercise and sprinter-pattern bridging exercise at random order. These data were expressed as the percentage of maximal voluntary contraction (%MVC).Electromyography analysis was performed by measuring the external obliques, internal obliques, biceps femoris, and gluteus maximus. Results: There was a statistically significant increment of muscle activity in external and internal oblique muscle(p<0.001)by sprinter-pattern bridging exercise using theraband. On the lower body, statistically significant increment of muscle activity in biceps femoris and gluteus maximus was found(p<0.05). On the other hand, on erector spinae, there was statistically significant decrease in muscle activity(p<0.05). Conclusions: Efficient treatment is expected when sprinter-pattern bridging exercise using theraband is applied clinically.For patients with chronic knee and ankle pain who have difficulty bearing weight, including low back pain and internal rotation of the femur, starting with a low weight bearing, we think it will be helpful in planning systematic training aimed at progressively strengthening the lower extremities.