• Title/Summary/Keyword: GlxR

Search Result 5, Processing Time 0.018 seconds

Identification of the Regulators Binding to the Upstream Region of glxR in Corynebacterium glutamicum

  • Subhadra, Bindu;Ray, Durga;Han, Jong Yun;Bae, Kwang-Hee;Lee, Jung-Kee
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1216-1226
    • /
    • 2015
  • GlxR is considered as a global transcriptional regulator controlling a large number of genes having broad physiological aspects in Corynebacterium glutamicum. However, the expression profile revealing the transcriptional control of glxR has not yet been studied in detail. DNA affinity chromatography experiments revealed the binding of transcriptional regulators SucR, RamB, GlxR, and a GntR-type protein (hereafter denoted as GntR3) to the upstream region of glxR. The binding of different regulators to the glxR promoter was confirmed by EMSA experiments. The expression of glxR was analyzed in detail under various carbon sources in the wild-type and different mutant strains. The sucR and gntR3 deletion mutants showed decreased glxR promoter activities, when compared with the wild type, irrespective of the carbon sources. The promoter activity of glxR was derepressed in the ramB deletion mutant under all the tested carbon sources. These results indicate that SucR and GntR3 are acting as activators of GlxR, while RamB plays a repressor. As expected, the expression of glxR in the cyaB and glxR deletion mutants was derepressed under different media conditions, indicating that GlxR is autoregulated.

Elucidation of the Regulation of Ethanol Catabolic Genes and ptsG Using a glxR and Adenylate Cyclase Gene (cyaB) Deletion Mutants of Corynebacterium glutamicum ATCC 13032

  • Subhadra, Bindu;Lee, Jung-Kee
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.12
    • /
    • pp.1683-1690
    • /
    • 2013
  • The cyclic AMP receptor protein (CRP) homolog, GlxR, controls the expression of several genes involved in the regulation of diverse physiological processes in Corynebacterium glutamicum. In silico analysis has revealed the presence of glxR binding sites upstream of genes ptsG, adhA, and ald, encoding glucose-specific phosphotransferase system protein, alcohol dehydrogenase (ADH), and acetaldehyde dehydrogenase (ALDH), respectively. However, the involvement of the GlxR-cAMP complex on the expression of these genes has been explored only in vitro. In this study, the expressions of ptsG, adhA, and ald were analyzed in detail using an adenylate cyclase gene (cyaB) deletion mutant and glxR deletion mutant. The specific activities of ADH and ALDH were increased in both the mutants in glucose and glucose plus ethanol media, in contrast to the wild type. In accordance, the promoter activities of adhA and ald were derepressed in the cyaB mutant, indicating that glxR acts as a repressor of adhA. Similarly, both the mutants exhibited derepression of ptsG regardless of the carbon source. These results confirm the involvement of GlxR on the expression of important carbon metabolic genes; adhA, ald, and ptsG.

Heterologous Expression of Phanerochaete chrysoporium Glyoxal Oxidase and its Application for the Coupled Reaction with Manganese Peroxidase to Decolorize Malachite Green

  • Son, Yu-Lim;Kim, Hyoun-Young;Thiyagarajan, Saravanakumar;Xu, Jing Jing;Park, Seung-Moon
    • Mycobiology
    • /
    • v.40 no.4
    • /
    • pp.258-262
    • /
    • 2012
  • cDNA of the glx1 gene encoding glyoxal oxidase (GLX) from Phanerochaete chrysosporium was isolated and expressed in Pichia pastoris. The recombinant GLX (rGLX) produces $H_2O_2$ over 7.0 nmol/min/mL using methyl glyoxal as a substrate. Use of rGLX as a generator of $H_2O_2$ improved the coupled reaction with recombinant manganese peroxidase resulting in decolorization of malachite green up to $150{\mu}M$ within 90 min.

Carbon Metabolism and Its Global Regulation in Corynebacterium glutamicum (Corynebacterium glutamicum의 탄소대사 및 총체적 탄소대사 조절)

  • Lee, Jung-Kee
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.4
    • /
    • pp.349-361
    • /
    • 2010
  • In this review, the current knowledge of the carbon metabolism and global carbon regulation in Corynebacterium glutamicum are summarized. C. gluamicum has phosphotransferase system (PTS) for the utilization of sucrose, glucose, and fructose. C. glutamicum does not show any preference for glucose when various sugars or organic acids are present with glucose, and thus cometabolizes glucose with other sugars or organic acids. The molecular mechanism of global carbon regulation such as carbon catabolite repression (CCR) in C. glutamicum is quite different to that in Gram-negative or low-GC Gram-positive bacteria. GlxR (glyoxylate bypass regulator) in C. glutamicum is the cyclic AMP receptor protein (CRP) homologue of E. coli. GlxR has been reported to regulate genes involved in not only glyoxylate bypass, but also central carbon metabolism and CCR including glycolysis, gluconeogenesis, and tricarboxylic acid (TCA) cycle. Therefore, GlxR has been suggested as a global transcriptional regulator for the regulation of diverse physiological processes as well as carbon metabolism. Adenylate cyclase of C. glutamicum is a membrane protein belonging to class III adenylate cyclases, thus it could possibly be a sensor for some external signal, thereby modulating cAMP level in response to environmental stimuli. In addition to GlxR, three additional transcriptional regulators like RamB, RamA, and SugR are also involved in regulating the expression of many genes of carbon metabolism. Finally, recent approaches for constructing new pathways for the utilization of new carbon sources, and strategies for enhancing amino acid production through genetic modification of carbon metabolism or regulatory network are described.