• 제목/요약/키워드: Glycolysis

검색결과 239건 처리시간 0.172초

Histone acetyltransferase inhibitors antagonize AMP-activated protein kinase in postmortem glycolysis

  • Li, Qiong;Li, Zhongwen;Lou, Aihua;Wang, Zhenyu;Zhang, Dequan;Shen, Qingwu W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권6호
    • /
    • pp.857-864
    • /
    • 2017
  • Objective: The purpose of this study was to investigate the influence of AMP-activated protein kinase (AMPK) activation on protein acetylation and glycolysis in postmortem muscle to better understand the mechanism by which AMPK regulates postmortem glycolysis and meat quality. Methods: A total of 32 mice were randomly assigned to four groups and intraperitoneally injected with 5-Aminoimidazole-4-carboxamide1-${\beta}$-D-ribofuranoside (AICAR, a specific activator of AMPK), AICAR and histone acetyltransferase inhibitor II, or AICAR, Trichostatin A (TSA, an inhibitor of histone deacetylase I and II) and Nicotinamide (NAM, an inhibitor of the Sirt family deacetylases). After mice were euthanized, the Longissimus dorsi muscle was collected at 0 h, 45 min, and 24 h postmortem. AMPK activity, protein acetylation and glycolysis in postmortem muscle were measured. Results: Activation of AMPK by AICAR significantly increased glycolysis in postmortem muscle. At the same time, it increased the total acetylated proteins in muscle 45 min postmortem. Inhibition of protein acetylation by histone acetyltransferase inhibitors reduced AMPK activation induced increase in the total acetylated proteins and glycolytic rate in muscle early postmortem, while histone deacetylase inhibitors further promoted protein acetylation and glycolysis. Several bands of proteins were detected to be differentially acetylated in muscle with different glycolytic rates. Conclusion: Protein acetylation plays an important regulatory role in postmortem glycolysis. As AMPK mediates the effects of pre-slaughter stress on postmortem glycolysis, protein acetylation is likely a mechanism by which antemortem stress influenced postmortem metabolism and meat quality though the exact mechanism is to be elucidated.

근수축시 해당작용에 의한 근형질 세망의 Ca2+ 변화가 미토콘드리아 Ca2+ 증가에 미치는 영향 (Glycolysis Mediated Sarcoplasmic Reticulum Ca2+ Signal Regulates Mitochondria Ca2+ during Skeletal Muscle Contraction)

  • 박대령
    • 운동과학
    • /
    • 제26권3호
    • /
    • pp.229-237
    • /
    • 2017
  • PURPOSE: This study was to investigate the Glycolysis mediated sarcoplasmic reticulum (SR) $Ca^{2+}$ signal regulates mitochondria $Ca^{2+}$ during skeletal muscle contraction by using glycolysis inhibitor. METHODS: To examine the effect of Glycolysis inhibitor on SR and mitochondria $Ca^{2+}$ content, we used skeletal muscle fiber from gastrocnemius muscle. 2-deoxy glucose and 3-bromo pyruvate used as glycolysis inhibitor, it applied to electrically stimulated muscle contraction experiment. Intracellular $Ca^{2+}$ content, SR, mitochondria $Ca^{2+}$ level and mitochondria membrane potential (MMP) was detected by confocal microscope. Mitochondrial energy metabolism related enzyme, citric acid synthase activity also examined for mitochondrial function during the muscle contraction. RESULTS: Treatment of 2-DG and 3BP decreased the muscle contraction induced SR $Ca^{2+}$ increase however the mitochondria $Ca^{2+}$ level was increased by treatment of inhibitors and showed and overloading as compared with the control group. Glycolysis inhibitor and thapsigargin treatment showed a significant decrease in MPP of skeletal muscle cells compared to the control group. CS activity significantly decreased after pretreatment of glycolysis inhibitor during skeletal muscle contraction. These results suggest that regulation of mitochondrial $Ca^{2+}$ levels by glycolysis is an important factor in mitochondrial energy production during skeletal muscle contraction CONCLUSIONS: These results suggest that mitochondria $Ca^{2+}$ level can be regulated by SR $Ca^{2+}$ level and glycolytic regulation of intraocular $Ca^{2+}$ signal play pivotal role in regulation of mitochondria energy metabolism during the muscle contraction.

Melatonin inhibits glycolysis in hepatocellular carcinoma cells by downregulating mitochondrial respiration and mTORC1 activity

  • Lee, Seunghyeong;Byun, Jun-Kyu;Kim, Na-Young;Jin, Jonghwa;Woo, Hyein;Choi, Yeon-Kyung;Park, Keun-Gyu
    • BMB Reports
    • /
    • 제55권9호
    • /
    • pp.459-464
    • /
    • 2022
  • Various mechanisms have been suggested to explain the chemopreventive and tumor-inhibitory effects of melatonin. Despite the growing evidence supporting melatonin-induced mitochondrial dysfunction, it remains largely unknown how this phenomenon modulates metabolic reprogramming in cancer cells. The aim of our study was to identify the mechanism underlying the anti-proliferative and apoptotic effects of melatonin, which is known to inhibit glycolysis. We analyzed the time-dependent effects of melatonin on mitochondrial respiration and glycolysis in liver cancer cells. The results showed that from a cell bioenergetic point of view, melatonin caused an acute reduction in mitochondrial respiration, however, increased reactive oxygen species production, thereby inhibiting mTORC1 activity from an early stage post-treatment without affecting glycolysis. Nevertheless, administration of melatonin for a longer time reduced expression of c-Myc protein, thereby suppressing glycolysis via downregulation of HK2 and LDHA. The data presented herein suggest that melatonin suppresses mitochondrial respiration and glycolysis simultaneously in HCC cells, leading to anti-cancer effects. Thus, melatonin can be used as an adjuvant agent for therapy of liver cancer.

돼지 근육의 사후 해당속도가 돈육 수리미의 젤 특성에 미치는 영향 (Effect of Glycolysis Rate in Porcine Muscle Postmortem on Gel Property of Pork Surimi)

  • 강근호;양한술;정진연;주선태;박구부
    • 한국축산식품학회지
    • /
    • 제25권4호
    • /
    • pp.423-429
    • /
    • 2005
  • 돈육을 수세하여 돈육 수리미를 제조할 때, 사후 해당 속도가 빠른 돈육을 원료육으로 이용하면 낮은 pH에 기인하여 보수성이 낮은 결과 적은 수분 함량을 보유하는 돈육 수세물을 획득하게 되어 수율이 낮아졌다. 사후 해당 속도가 빠른 돈육은 정상 돈육에 비해 육단백질의 변성이 유발되어 수분 함량이 낮고 치밀한 젤 매트릭스를 형성하여 경도가 높지만 탄력성이 낮은 돈육 수리미를 생산하였다. 뿐만 아니라 사후 해당 속도가 빠른 돈육은 변성된 근장 단백질이 근원섬유 단백질과 결합하여 수세되지 않고 돈육 수세물 내에 잔존하게 되어 돈육 수리미의 색깔을 어둡게 만드는 원인으로 작용한 것으로 사료된다.

A New Perspective on the Heterogeneity of Cancer Glycolysis

  • Neugent, Michael L.;Goodwin, Justin;Sankaranarayanan, Ishwarya;Yetkin, Celal Emre;Hsieh, Meng-Hsiung;Kim, Jung-whan
    • Biomolecules & Therapeutics
    • /
    • 제26권1호
    • /
    • pp.10-18
    • /
    • 2018
  • Tumors are dynamic metabolic systems which highly augmented metabolic fluxes and nutrient needs to support cellular proliferation and physiological function. For many years, a central hallmark of tumor metabolism has emphasized a uniformly elevated aerobic glycolysis as a critical feature of tumorigenecity. This led to extensive efforts of targeting glycolysis in human cancers. However, clinical attempts to target glycolysis and glucose metabolism have proven to be challenging. Recent advancements revealing a high degree of metabolic heterogeneity and plasticity embedded among various human cancers may paint a new picture of metabolic targeting for cancer therapies with a renewed interest in glucose metabolism. In this review, we will discuss diverse oncogenic and molecular alterations that drive distinct and heterogeneous glucose metabolism in cancers. We will also discuss a new perspective on how aberrantly altered glycolysis in response to oncogenic signaling is further influenced and remodeled by dynamic metabolic interaction with surrounding tumor-associated stromal cells.

연질 폐우레탄 폼의 재활용을 위한 해중합법 개발 (Development of Depolymerization Method on the Recycling of Waste Flexible Polyurethane Foam)

  • 엄재열;이병학;신판우;김용렬
    • 한국환경보건학회지
    • /
    • 제28권2호
    • /
    • pp.41-49
    • /
    • 2002
  • Resource recovery and recycling of materials and products including polyurethanes are viewed as a necessity in today's society. The problems of recycling polyurethane wastes has major technological, economic and ecological significance because polyurethane itself is relatively expensive and its disposal by burning is also costly. In general, the recycling methods for polyurethane could be classified as mechanical, chemical and physical. In the chemical recycling method, there ate hydrolysis, glycolysis, pyrolysis and aminolysis. This study was carried out glycolysis using new method such as sonication and catalyzed reaction. There are kinds of recycled polyols were produced by current method(glycolysis) but, this study were with catalyzed reaction and sonication as decomposers and the chemical properties were analyzed. The reaction results in the formation of polyester urethane diols and then the OH value which is determined by the quantity of diol used for the glycolysis conditions. The glycolysis rates by sonication and catalyzed reaction for the various glycols, increased as: PPG

Construction of Comprehensive Metabolic Network for Glycolysis with Regulation Mechanisms and Effectors

  • JIN, JONG-HWA;JUNG, UI-SUB;JAE, WOOK-NAM;IN, YONG-HO;LEE, SANG-YUP;LEE, DOHE-ON;LEE, JIN-WON
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권1호
    • /
    • pp.161-174
    • /
    • 2005
  • Abstract Glycolysis has a main function to provide ATP and precursor metabolites for biomass production. Although glycolysis is one of the most important pathways in cellular metabolism, the details of its regulation mechanism and regulating chemicals are not well known yet. The regulation of the glycolytic pathway is very robust to allow for large fluxes at almost constant metabolite levels in spite of changing environmental conditions and many reaction effectors like inhibitors, activating compounds, cofactors, and related metal ions. These changing environmental conditions and metabolic reaction effectors were focused on to understand their roles in the metabolic networks. In this study, we have investigated for construction of the regulatory map of the glycolytic metabolic network and tried to collect all the effectors as much as possible which might affect the glycolysis metabolic pathway. Using the results of this study, it is expected that a complex metabolic situation can be more precisely analyzed and simulated by using available programs and appropriate kinetic data.

폴리카보네이트의 글리콜첨가분해/메탄올첨가분해 복합 해중합 (Depolymerization of Polycarbonate Using Glycolysis/Methanolysis Hybrid Process)

  • 김동필;김보경;조영민;김범식;한명완
    • 청정기술
    • /
    • 제13권4호
    • /
    • pp.251-256
    • /
    • 2007
  • 폴리카보네이트(PC)의 해중합 방법에는 여러 가지방법이 보고되어 있으나, 기존의 해중합 방범에는 페놀, 톨루엔, 다이옥신 등의 독성물질 사용으로 인한 환경적인 안전문제, 알칼리의 사용으로 인한 2차 분리 문제 등이 있다. 따라서 본 연구에서는 독성물질 및 촉매를 사용하지 않고 에틸렌글리콜(EG)과 메탄올(MeOH)을 사용한 글리콜첨가분해(glycolysis)/메탄올첨가분해(methanolysis) 혼성공정에 의하여 폐PC로부터 비스페놀 A (BPA)를 회수하였다. 글리콜첨가분해는 반응온도 473.15K에서 180분에 반응평형에 도달하였고, PC의 용해과정이 이 반응의 율속단계로 나타났다. 글리콜첨가분해 이후 메탄올첨가분해를 시행함으로써 BPA수율을 높일 수 있었으며, HeOH/PC 몰비 1에서 BPA수율은 최대점을 가지고, 반응 온도가 증가할수록 수율이 증가하였다.

  • PDF

자동차 시트용 폐폴리우레탄의 해중합 (Depolymerization of Waste Polyurethane from Automotive Seats)

  • 민성진;공승대;윤철훈;강안수;엄재열;신판우;이석우
    • 한국응용과학기술학회지
    • /
    • 제18권2호
    • /
    • pp.103-110
    • /
    • 2001
  • Resource recovery and recycling of materials and products, including polyurethanes is viewed as a necessity in today's society. Most urethane polymers are made from a polyol and a diisocyanate. these and be chemicals such as water, diamines or diols that react with isocyanate groups and add to the polymer backbone. The problems of recycling polyurethane wastes has major technological, economic and ecological significance because polyurethane itself is relatively expensive and its disposal whether by burning is also costly. In general, the recycling methods for polyurethane could be classified as mechanical, chemical and feedstock. In the chemical recycling method, there are hydrolysis, glycolysis, pyrolysis and aminolysis. This study, the work was carried out glycolysis using sonication ant catalyzed reaction. Different kinds of recycled polyols were produced by current method(glycolysis), catalyzed reaction and sonication as decomposers and the chemical properties were analyzed. The reaction results in the formation of polyester urethane diols, the OH value which is determined by the quantity of diol used for the glycolysis conditions. The glycolysis rates by sonication for the various glycols, increased as fallows: PPG

Impact of glucose and pyruvate on adenosine triphosphate production and sperm motility in goats

  • Rangga Setiawan;Raden Febrianto Christi;Ken Ratu Gharizah Alhuur;Rini Widyastuti;Nurcholidah Solihati;Siti Darodjah Rasad;Kundrat Hidajat;Duy Ngoc Do
    • Animal Bioscience
    • /
    • 제37권4호
    • /
    • pp.631-639
    • /
    • 2024
  • Objective: This study evaluates goat sperm motility in response to metabolic substrates and various inhibitors, aiming to assess the relative contribution of glycolysis and mitochondrial oxidation for sperm movement and adenosine triphosphate (ATP) production. Methods: In the present study, two main metabolic substrates; 0 to 0.5 mM glucose and 0 to 30 mM pyruvate were used to evaluate their contribution to sperm movements of goats. Using a 3-chloro-1,2-propanediol (3-MCPD), a specific inhibitor for glycolysis, and carbonyl cyanide 3-chlorophenylhydrazone as an inhibitor for oxidative phosphorylation, cellular mechanisms into ATP-generating pathways in relation to sperm movements and ATP production were observed. Data were analysed using one-way analysis of variance for multiple comparisons. Results: Sperm motility analysis showed that either glucose or pyruvate supported sperm movement during 0 to 30 min incubation. However, the supporting effects were abolished by the addition of a glycolysis inhibitor or mitochondrial uncoupler, concomitant with a significant decrease in ATP production. Although oxidative phosphorylation produces larger ATP concentrations than those from glycolysis, sperm progressivity in relation to these two metabolic pathways is comparable. Conclusion: Based on the present study, we suggest that goat sperm use glucose and pyruvate to generate cellular energy through glycolysis and mitochondrial respiration pathways to maintain sperm movement.