• Title/Summary/Keyword: Golden-section optimization

Search Result 23, Processing Time 0.035 seconds

Optimization of Design Variable for Injection Molding Using a Modified Golden Section Search Method (수정된 황금분할 탐색법을 이용한 사출성형 설계인자의 최적화)

  • Park, Jong-Cheon;Kim, Kyung-Mo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.63-69
    • /
    • 2017
  • The golden section search method is widely used to optimize a single design variable in many fields due to its superior advantages of search. In this paper, a new direct search method is proposed by modifying the search structure of the golden section search method; thus, it can be adapted in the optimization of a single design variable for the injection molding process. This proposed method is applied to determine an optimal gate position for the injection molding of a bezel of an automated teller machine for minimizing the injection pressure. Thus, an optimal gate position where the injection pressure is decreased by 4.5 MPa to that of the initial position was obtained with a small number of simulations. It is anticipated that the current proposed search method can be utilized as a practical tool for optimizing single variables for injection molding design.

Dual-Algorithm Maximum Power Point Tracking Control Method for Photovoltaic Systems based on Grey Wolf Optimization and Golden-Section Optimization

  • Shi, Ji-Ying;Zhang, Deng-Yu;Ling, Le-Tao;Xue, Fei;Li, Ya-Jing;Qin, Zi-Jian;Yang, Ting
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.841-852
    • /
    • 2018
  • This paper presents a dual-algorithm search method (GWO-GSO) combining grey wolf optimization (GWO) and golden-section optimization (GSO) to realize maximum power point tracking (MPPT) for photovoltaic (PV) systems. First, a modified grey wolf optimization (MGWO) is activated for the global search. In conventional GWO, wolf leaders possess the same impact on decision-making. In this paper, the decision weights of wolf leaders are automatically adjusted with hunting progression, which is conducive to accelerating hunting. At the later stage, the algorithm is switched to GSO for the local search, which play a critical role in avoiding unnecessary search and reducing the tracking time. Additionally, a novel restart judgment based on the quasi-slope of the power-voltage curve is introduced to enhance the reliability of MPPT systems. Simulation and experiment results demonstrate that the proposed algorithm can track the global maximum power point (MPP) swiftly and reliably with higher accuracy under various conditions.

Optimization Inverse Design Technique for Fluid Machinery Impellers (유체기계 임펠러의 최적 역설계 기법)

  • Kim J. S.;Park W. G.
    • Journal of computational fluids engineering
    • /
    • v.3 no.1
    • /
    • pp.37-45
    • /
    • 1998
  • A new and efficient inverse design method based on the numerical optimization technique has been developed. The 2-D incompressible Navier-Stokes equations are solved for obtaining the objective functions and coupled with the optimization procedure to perform the inverse design. The steepest descent and the conjugate gradient method have been applied to find the searching direction. The golden section method was applied to compute the design variable intervals. It has been found that the airfoil and the pump impellers are well converged to their targeting shapes.

  • PDF

Study on the Volume Fraction Optimization of Functionally Graded Heat-Resisting Composites (기능경사 내열 복합재의 체적분율 최적화에 관한 연구)

  • Jo, Jin-Rae;Ha, Dae-Yul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.6
    • /
    • pp.988-995
    • /
    • 2001
  • Functionally graded materials(FGMs) are highlighted to be suitable for high temperature engineering due to their continuous distribution of material properties. In this paper, an optimal design is executed for determining the optimal material volume distribution pattern that minimizes the steady-state thermal stress of FGM heat-resisting composites. The interior penalty function method and the golden section method are employed as optimization techniques while the finite element method is used for thermal stress analysis. Through numerical simulations we suggest the volume fraction distributions that considerably improve initial thermal stress distributions.

Numerical optimization via ALM method (ALM방법에 의한 수치해석적 최적화)

  • 김민수;이재원
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.24-33
    • /
    • 1989
  • 본 고에서는 이러한 추세에 따라서, 보다 효율적인 optimization program에 대해서 소개하고자 한다. 사용한 최적화 알고리즘은 ALM(augmented lagrange multiplier) 방법을 적용해서 구속조건이 있는 문제를 구속조건이 없는 문제로 변환한 후, self-scaling BFGS(broydon-flecher-goldfarb-schanno)를 적용한다. BFGS의 각 descent 방향에서의 step 길이는, sequential search로 unimodal point를 구해서, golden section 방법으로 refine을 한후, cubic approximation을 적용해서 구한다.

  • PDF

A Study on Numerical Optimization Method for Aerodynamic Design (공력설계를 위한 수치최적설계기법의 연구)

  • Jin, Xue-Song;Choi, Jae-Ho;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.1 s.2
    • /
    • pp.29-34
    • /
    • 1999
  • To develop the efficient numerical optimization method for the design of an airfoil, an evaluation of various methods coupled with two-dimensional Naviev-Stokes analysis is presented. Simplex method and Hook-Jeeves method we used as direct search methods, and steepest descent method, conjugate gradient method and DFP method are used as indirect search methods and are tested to determine the search direction. To determine the moving distance, the golden section method and cubic interpolation method are tested. The finite volume method is used to discretize two-dimensional Navier-Stokes equations, and SIMPLEC algorithm is used for a velocity-pressure correction method. For the optimal design of two-dimensional airfoil, maximum thickness, maximum ordinate of camber line and chordwise position of maximum ordinate are chosen as design variables, and the ratio of drag coefficient to lift coefficient is selected as an objective function. From the results, it is found that conjugate gradient method and cubic interpolation method are the most efficient for the determination of search direction and the moving distance, respectively.

  • PDF

A Study on Design Optimization of Mooring Pier using Prestressed Precast Concrete Panel (프리스트레스트 프리캐스트 콘크리트 패널을 이용한 잔교식부두의 최적설계)

  • 조병완;태기호;김용철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.253-258
    • /
    • 2000
  • Recently, the area of design optimization, especially structural optimization, has been and to be a continuous active area of research. And the design optimizations of port facilities have been achieved by many other civil engineers. But the design optimization of port facilities were limited to the design optimization of the breasting dolphin. This paper invested the design optimization of mooring pier and the foundations of mooring pier was suggested considering the convenience of repair and reinforcement work. The mooring pier devised with prestressed precast concrete panel and rigid frame welded wide flange beam to steel pipe pile. To accomplish the design optimization of mooring pier, the Augmented Lagrangian Multiplier Method(ALM) of ADS(Garret N. Vanderplaats) optimization routine, BFGS method as optimizer and Golden Section Method as one dimensional search were utilized. As a result, thirty percent of material cost for construction was reduced by design optimization. The tensile stress of concrete panel and bottom flage was critical constraints under service load. So, using high strength concrete and steel will be economical. And lots of initial values must be invested to accomplish the design optimization in design procedures.

  • PDF

Controller Optimization Algorithm for a 12-pulse Voltage Source Converter based HVDC System

  • Agarwal, Ruchi;Singh, Sanjeev
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.643-653
    • /
    • 2017
  • The paper presents controller optimization algorithm for a 12-pulse voltage source converter (VSC) based high voltage direct current (HVDC) system. To get an optimum algorithm, three methods namely conventional-Zeigler-Nichols, linear-golden section search (GSS) and stochastic-particle swarm optimization (PSO) are applied to control of 12 pulse VSC based HVDC system and simulation results are presented to show the best among the three. The performance results are obtained under various dynamic conditions such as load perturbation, non-linear load condition, and voltage sag, tapped load fault at points-of-common coupling (PCC) and single-line-to ground (SLG) fault at input AC mains. The conventional GSS and PSO algorithm are modified to enhance their performances under dynamic conditions. The results of this study show that modified particle swarm optimization provides the best results in terms of quick response to the dynamic conditions as compared to other optimization methods.

Design Optimization of Axial Flow Compressor Blades with Three-Dimensional N avier-Stokes Solver

  • Lee, Sang-Yun;Kim, Kwang-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.9
    • /
    • pp.1005-1012
    • /
    • 2000
  • Numerical optimization techniques combined with a three-dimensional thin-layer Navier-Stokes solver are presented to find an optimum shape of a stator blade in an axial compressor through calculations of single stage rotor-stator flow. Governing differential equations are discretized using an explicit finite difference method and solved by a multi-stage Runge-Kutta scheme. Baldwin-Lomax model is chosen to describe turbulence. A spatially-varying time-step and an implicit residual smoothing are used to accelerate convergence. A steady mixing approach is used to pass information between stator and rotor blades. For numerical optimization, searching direction is found by the steepest decent and conjugate direction methods, and the golden section method is used to determine optimum moving distance along the searching direction. The object of present optimization is to maximize efficiency. An optimum stacking line is found to design a custom-tailored 3-dimensional blade for maximum efficiency with the other parameters fixed.

  • PDF

Computational enhancement to the augmented lagrange multiplier method for the constrained nonlinear optimization problems (구속조건식이 있는 비선형 최적화 문제를 위한 ALM방법의 성능향상)

  • 김민수;김한성;최동훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.544-556
    • /
    • 1991
  • The optimization of many engineering design problems requires a nonlinear programming algorithm that is robust and efficient. A general-purpose nonlinear optimization program IDOL (Interactive Design Optimization Library) is developed based on the Augmented Lagrange Mulitiplier (ALM) method. The ideas of selecting a good initial design point, using resonable initial values for Lagrange multipliers, constraints scaling, descent vector restarting, and dynamic stopping criterion are employed for computational enhancement to the ALM method. A descent vector is determined by using the Broydon-Fletcher-Goldfarb-Shanno (BFGS) method. For line search, the Incremental-Search method is first used to find bounds on the solution, then the bounds are reduced by the Golden Section method, and finally a cubic polynomial approximation technique is applied to locate the next design point. Seven typical test problems are solved to show IDOL efficient and robust.