• Title/Summary/Keyword: Gorenstein ideals

Search Result 15, Processing Time 0.031 seconds

A STRUCTURE THEOREM FOR A CLASS OF GORENSTEIN IDEALS OF GRADE FOUR

  • Cho, Yong S.
    • Honam Mathematical Journal
    • /
    • v.36 no.2
    • /
    • pp.387-398
    • /
    • 2014
  • In this paper, we give a structure theorem for a class of Gorenstein ideal of grade 4 which is the sum of an almost complete intersection of grade 3 and a Gorenstein ideal of grade 3 geometrically linked by a regular sequence. We also present the Hilbert function of a Gorenstein ideal of grade 4 induced by a Gorenstein matrix f.

$\kappa$-CONFIGURATIONS IN $\mathbb{P}^2$ AND GORENSTEIN IDEALS OF CODIMENSION 3

  • Shin, Yong-Su
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.1
    • /
    • pp.249-261
    • /
    • 1997
  • We find a necessary and sufficient condition for a $\kappa$-confi-guration $\mathbb{X}$ in $\mathbb{P}^2$ to be in generic position. We obtain the number and degrees of minimal generators of some Gorenstein ideals of codimension 3 and so obtain their minimal free resolution s of these ideals.

STRUCTURE THEOREMS FOR SOME CLASSES OF GRADE FOUR GORENSTEIN IDEALS

  • Cho, Yong Sung;Kang, Oh-Jin;Ko, Hyoung June
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.99-124
    • /
    • 2017
  • The structure theorems [3, 6, 21] for the classes of perfect ideals of grade 3 have been generalized to the structure theorems for the classes of perfect ideals linked to almost complete intersections of grade 3 by a regular sequence [15]. In this paper we obtain structure theorems for two classes of Gorenstein ideals of grade 4 expressed as the sum of a perfect ideal of grade 3 (except a Gorenstein ideal of grade 3) and an almost complete intersection of grade 3 which are geometrically linked by a regular sequence.

ON THE STRUCTURE OF THE GRADE THREE PERFECT IDEALS OF TYPE THREE

  • Choi, Eun-Jeong;Kang, Oh-Jin;Ko, Hyoung-June
    • Communications of the Korean Mathematical Society
    • /
    • v.23 no.4
    • /
    • pp.487-497
    • /
    • 2008
  • Buchsbaum and Eisenbud showed that every Gorenstein ideal of grade 3 is generated by the submaximal order pfaffians of an alternating matrix. In this paper, we describe a method for constructing a class of type 3, grade 3, perfect ideals which are not Gorenstein. We also prove that they are algebraically linked to an even type grade 3 almost complete intersection.

NOTE ON GOOD IDEALS IN GORENSTEIN LOCAL RINGS

  • Kim, Mee-Kyoung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.3
    • /
    • pp.479-484
    • /
    • 2002
  • Let I be an ideal in a Gorenstein local ring A with the maximal ideal m and d = dim A. Then we say that I is a good ideal in A, if I contains a reduction $Q=(a_1,a_2,...,a_d)$ generated by d elements in A and $G(I)=\bigoplus_{n\geq0}I^n/I^{n+1}$ of I is a Gorenstein ring with a(G(I)) = 1-d, where a(G(I)) denotes the a-invariant of G(I). Let S = A[Q/a$_1$] and P = mS. In this paper, we show that the following conditions are equivalent. (1) $I^2$ = QI and I = Q:I. (2) $I^2S$ = $a_1$IS and IS = $a_1$S:sIS. (3) $I^2$Sp = $a_1$ISp and ISp = $a_1$Sp :sp ISp. We denote by $X_A(Q)$ the set of good ideals I in $X_A(Q)$ such that I contains Q as a reduction. As a Corollary of this result, we show that $I\inX_A(Q)\Leftrightarrow\IS_P\inX_{SP}(Qp)$.

ON STRONGLY GORENSTEIN HEREDITARY RINGS

  • Hu, Kui;Kim, Hwankoo;Wang, Fanggui;Xu, Longyu;Zhou, Dechuan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.2
    • /
    • pp.373-382
    • /
    • 2019
  • In this note, we mainly discuss strongly Gorenstein hereditary rings. We prove that for any ring, the class of SG-projective modules and the class of G-projective modules coincide if and only if the class of SG-projective modules is closed under extension. From this we get that a ring is an SG-hereditary ring if and only if every ideal is G-projective and the class of SG-projective modules is closed under extension. We also give some examples of domains whose ideals are SG-projective.

EQUIMULTIPLE GOOD IDEALS WITH HEIGHT 1

  • Kim, Mee-Kyoung
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.127-135
    • /
    • 2002
  • Let I be an ideal in a Gorenstein local ring A with the maximal ideal m. Then we say that I is an equimultiple good ideal in A, if I contains a reduction Q = ( $a_1$, $a_2$,ㆍㆍㆍ, $a_{s}$ ) generated by s elements in A and G(I) =(equation omitted)$_{n 0}$ $I^{n}$ / $I^{n+1}$ of I is a Gorenstein ring with a(G(I)) = 1 - s, where s = h $t_{A}$ I and a(G(I)) denotes the a-invariant of G(I). Let $X_{A}$$^{s}$ denote the set of equimultiple good ideals I in A with h $t_{A}$ I = s, R(I) = A [It] be the Rees algebra of I, and $K_{R(I)}$ denote the canonical module of R(I). Let a I such that $I^{n+l}$ = a $I^{n}$ for some n$\geq$0 and $\mu$$_{A}$(I)$\geq$2, where $\mu$$_{A}$(I) denotes the number of elements in a minimal system of generators of I. Assume that A/I is a Cohen-Macaulay ring. We show that the following conditions are equivalent. (1) $K_{R(I)}$(equation omitted)R(I)+as graded R(I)-modules. (2) $I^2$ = aI and aA : I$\in$ $X^1$$_{A}$._{A}$./.

HILBERT FUNCTIONS OF STANDARD k-ALGEBRAS DEFINED BY SKEW-SYMMETRIZABLE MATRICES

  • Kang, Oh-Jin
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.5
    • /
    • pp.1379-1410
    • /
    • 2017
  • Kang and Ko introduced a skew-symmetrizable matrix to describe a structure theorem for complete intersections of grade 4. Let $R=k[w_0,\;w_1,\;w_2,\;{\ldots},\;w_m]$ be the polynomial ring over an algebraically closed field k with indetermiantes $w_l$ and deg $w_l=1$, and $I_i$ a homogeneous perfect ideal of grade 3 with type $t_i$ defined by a skew-symmetrizable matrix $G_i(1{\leq}t_i{\leq}4)$. We show that for m = 2 the Hilbert function of the zero dimensional standard k-algebra $R/I_i$ is determined by CI-sequences and a Gorenstein sequence. As an application of this result we show that for i = 1, 2, 3 and for m = 3 a Gorenstein sequence $h(R/H_i)=(1,\;4,\;h_2,\;{\ldots},\;h_s)$ is unimodal, where $H_i$ is the sum of homogeneous perfect ideals $I_i$ and $J_i$ which are geometrically linked by a homogeneous regular sequence z in $I_i{\cap}J_i$.