• Title/Summary/Keyword: Gough-Stewart Platform

Search Result 11, Processing Time 0.032 seconds

Complete Parameter Identification of Gough-Stewart platform with partial pose measurements using a new measurement device

  • Rauf, Abdul;Ryu, Je-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.825-830
    • /
    • 2004
  • Kinematic calibration of Gough-Stewart platform using a new measurement device is presented in this paper. The device simultaneously measures components of position and orientation using commercially available gadgets. Additional kinematic parameters are defined to model the sources of inaccuracies for the proposed measurement device. Computer simulations reveal that all kinematic parameters of the Gough-Stewart platform and the additional kinematic parameters of the measurement device can be identified with the partial pose measurements of the device. Results also show that identification is robust for the initial errors and the noise in measurements. The device also facilitates the automation of easurement procedure.

  • PDF

New Formulation Method for Reducing the Direct Kinematic Complexity of the 3-6 Stewart-Gough Platform

  • Song, Se-Kyong;Kwon, Dong-Soo
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.2
    • /
    • pp.156-163
    • /
    • 2002
  • This paper presents a new formulation to simplify the three resulting constraint equations of the direct kinematics of the 3-6 (Stewart-Gough) Platform. The conventional direct kinematics of the 3-6 Platform has been formulated through complicated steps with trigonometric functions in three angle variables and thus results in the computational burden. In order to reduce the formulation complexity, we replace an angle variable into a length one and express three connecting joints on the moving platform in the same frame. The proposed formulation yields considerable abbreviation of the number of the calculation terms involved in the direct kinematics. It is verified through a series of simulation results.

Workspace and Force-Moment Transmission of a Parallel Manipulator with Variable Platform (가변형 병렬기구에 대한 작업공간과 힘/모멘트 전달 특성 해석)

  • Kim Byoung-Chang;Lee Se-Han
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.2
    • /
    • pp.138-144
    • /
    • 2006
  • Kinematic and dynamic characteristics of a Stewart platform based parallel manipulators are fixed once they are constructed. Thus parallel manipulators with various configurations are required to meet a variety of applications. In this research a parallel manipulator with variable platform (PMVP) has been developed, in which the length of the arm linking the platform center to the platform-leg contact point can be varied by an actuator. The workspace of the PMVP is larger than that of a traditional Stewart platform and especially the range in which the maximum orientation angles can be maintained is significantly expanded. Furthermore, the characteristics of force and moment transmission between the legs and platform can be adjusted to meet the requirements of various tasks. Kinematic and dynamics analysis was performed to verify the usefulness of the PMVP and the actual hardware was built to demonstrate the feasibility.

New Closed-Form Direct Kinematic Solution of the 3-6 Stewart-Gough Platform Using the Tetrahedron Approach

  • Song, Se-Kyong;Kwon, Dong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.83.4-83
    • /
    • 2001
  • The paper presents a new closed-form, not a polynomial-form, solution of the direct kinematics of the 3-6 (Stewart-Gough) Platform. Many research works have presented a single high-order polynomial equation of the direct kinematics. However the polynomial equation causes potential problems such as complicated formulation procedures and discrimination of the actual solution from all roots, which results in time-consuming task and heavy computational burden. Thus, to overcome these problems, we use a new formulation approach, based on the Tetrahedron Approach, to derive easily a closed-form nonlinear equation of the direct kinematics and use not the Newton-Raphson method, but the Secant method to obtain quickly the solution from ...

  • PDF

New Efficient Direct Kinematics for 6-dof Parallel-Serial Haptic Devices

  • Song, Se-Kyong;Kwon, Dong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.83.2-83
    • /
    • 2001
  • This paper presents a new formulation approach to reduce computational burden of the direct kinematics of 6-dof haptic devices with three sets of a parallel-serial linkage. Their direct kinematics has been formulated through employing the Denavit-Hartenberg notation, which results in complicated formulation procedures and heavy computational burden. For reducing these problems, this paper reconfigures the haptic devices into an equivalent kinematic model of the 3-6 Stewart-Gough Platform that has three connecting joints on the moving platform. Moreover, the direct kinematics of the 3-6 Platform can be effectively formulated by using the proposed Tetrahedron Approach.

  • PDF

New Direct Kinematic Formulation of 6 D.O.F Stewart-Cough Platforms Using the Tetrahedron Approach

  • Song, Se-Kyong;Kwon, Dong-Soo
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.3
    • /
    • pp.217-223
    • /
    • 2002
  • The paper presents a single constraint equation of the direct kinematic solution of 6-dof (Stewart-Gough) platforms. Many research works have presented a single polynomial of the direct kinematics for several 6-dof platforms. However, the formulation of the polynomial has potential problems such as complicated formulation procedures and discrimination of the actual solution from all roots. This results in heavy computational burden and time-consuming task. Thus, to overcome these problems, we use a new formulation approach, called the Tetrahedron Approach, to easily derive a single constraint equation, not a polynomial one, of the direct kinematics and use two well-known numerical iterative methods to find the solution of the single constraint equation. Their performance and characteristics are investigated through a series of simulation.

Friction Force Compensation for Actuators of a Parallel Manipulator Using Gravitational Force (중력을 이용한 병렬형 머니퓰레이터 구동부의 마찰력 보상)

  • Lee Se-Han;Song Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.7
    • /
    • pp.609-614
    • /
    • 2005
  • Parallel manipulators have been used for a variety of applications, including the motion simulators and mechanism for precise machining. Since the ball screws used for linear motion of legs of the Stewart-Gough type parallel manipulator provide wider contact areas than revolute joints, parallel manipulators are usually more affected by frictional forces than serial manipulators. In this research, the method for detecting the frictional forces arising in the parallel manipulator using the gravitational force is proposed. First, the reference trajectories are computed from the dynamic model of the parallel manipulator assuming that it is subject to only the gravitational force without friction. When the parallel manipulator is controlled so that the platform follows the computed reference trajectory, this control force for each leg is equal to the friction force arising in each leg. It is shown that control performance can be improved when the friction compensation based on this information is added to the controller for position control of the moving plate of a parallel manipulator.

Development of a 6-axis Robotic Base Platform with Force/Moment Sensing (힘/모멘트 측정기능을 갖는 6축 로봇 베이스 플랫폼 개발)

  • Jung, Sung Hun;Kim, Han Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.3
    • /
    • pp.315-324
    • /
    • 2019
  • This paper present a novel 6-axis robotic base platform with force/moment sensing. The robotic base platform is made up of six loadcells connecting the moving plate to the fixed plate by spherical joints at the both ends of loadcells. The statics relation is derived, the robotic base platform prototype and the loadcell measurement system are developed. The force/moment calibrations in joint and Cartesian spaces are performed. The algorithm to detect external force applied at a working robot is derived, and using a 6-DOF robot mounted on the robotic base platform, force/moment measurement experiments have been performed.

Study on Optimal Calibration Configurations of a Parallel Type Machining Center Under a Single Planar Constraint

  • Lee, Min-Ki;Kim, Tae-Sung;Park, Kun-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1886-1893
    • /
    • 2003
  • This paper examines the parameter observability of a calibration system that consrains a mobile platform to a planar table to take the calibration data. To improve the parameter observability, we find the optimal configurations providing the calibration with maximum contribution. The QR-decomposition is used to compute the optimal configurations that maximize the linear independence of rows of an observation matrix. The calibration system is applied to the parallel type manipulator constructed for a machining center. The calibration results show that all the necessary kinematic parameters assigned in a Stewart-Gough platform are identifiable and convergent to desirable accuracy.

Washout Algorithm with Fuzzy-Based Tuning for a Motion Simulator

  • Song, Jae-Bok;Jung, Ui-Jung;Ko, Hee-Dong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.221-229
    • /
    • 2003
  • In the virtual environment, reality can be enhanced by offering the motion based on a motion simulator in harmony with visual and auditory modalities. In this research the Stewart-Gough-platform-based motion simulator has been developed. Implementation of vehicle dynamics is necessary in the motion simulator for realistic sense of motion, so bicycle dynamics is adopted in this research. In order to compensate for the limited range of the motion simulator compared with the real vehicle motion, washout algorithm composed of high-pass filter, low-pass filter and tilt coordination is usually employed. Generally, the washout algorithm is used with fixed parameters. In this research a new approach is proposed to tune the filter parameters based on fuzzy logic in real-time. The cutoff frequencies of the filters are adjusted according to the workspace margins and driving conditions. It is shown that the washout filter with the fuzzy-based parameters presents better performance than that with the fixed ones.