• Title/Summary/Keyword: Greenhouse Management System

Search Result 262, Processing Time 0.037 seconds

Development of Web-based Management System for Greenhouse Teleoperation (웹을 통한 온실 원격 관리 시스템의 개발)

  • Sim, Ju-Hyeon;Baek, Un-Jae;Park, Ju-Hyeon;Lee, Seok-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.750-753
    • /
    • 2003
  • In this paper, we have developed the web-based management system for greenhouse teleoperation. The remote control system consists of database, web-server, controller in greenhouse, and clients. The database in the server stores user informations and greenhouse conditions, and is used to manage user login and conditioning data. The management system developed by using Java applet, which is a client program for effective and easy management of greenhouse, monitors the greenhouse in real time. Master and driver boards installed in greenhouse control unit. Database on flowering to collect and analyze data exchanges data with the server. The greenhouse can be managed effectively by timer routine, repeat control within setting time, and algorithm of setting points. Also, the greenhouse conditions can be controlled by manual or remote controller (PC) through web browser in internet. Furthermore, all of the control devices of the greenhouse are managed by remote control using PC and checked via camera installed in greenhouse.

  • PDF

Development and Performance Evaluation of a Web-based Management System for Greenhouse Teleoperation (시설재배를 위한 웹 기반의 원격 관리 시스템의 개발 및 성능평가)

  • 심주현;백운재;박주현;이석규
    • Journal of Biosystems Engineering
    • /
    • v.29 no.2
    • /
    • pp.159-166
    • /
    • 2004
  • In this study, we have developed a web-based management system for greenhouse teleoperation. The remote control system consisted of a database, a web-server, a controller in greenhouse, and clients. The database in the server stored user's information and greenhouse conditions was used to manage user's login and conditioning data. The management system developed by using Java applet, which was a client program for effective and easy management of greenhouse, monitored the greenhouse in real time. Master and driver boards were installed in the greenhouse control unit. Database on flowering to collect and analyze data exchanged data with the server. The master board could be managed effectively by timer routine, repeat control within setting time, and algorithm of setting points. Also, the greenhouse conditions could be controlled by manual or remote controller(PC) through a web browser in internet. Furthermore, all of the control devices of the greenhouse were managed by remote control of using PC and checked via camera installed in greenhouse. Finally, we showed the experimental results of the system which was installed in Pusan Horticultural Experiment Station.

A Study on the Development of Greenhouse Management System Based on Internet (인터넷 온실경영관리시스템 개발에 관한 연구)

  • Shim, Keun-Seop;Kang, Jeong-Ok;Lee, Hee-Ju
    • Journal of Agricultural Extension & Community Development
    • /
    • v.11 no.1
    • /
    • pp.191-207
    • /
    • 2004
  • This study was focused on the development of greenhouse management and environmental control system using internet. The essence of this system were remote automatic control unit connected with greenhouse environmental control according to the growth stages of crops, The specific objectives of the study were; 1) to analyze need of greenhouse environmental remote control system, 2) to investigate the important functions related to greenhouse management program, 3) to explore the possibility of diffusing the system using internet.The study was carried out through review of related literature and need assessment from the research and extension workers in charge of greenhouse management using questionnaire survey, interview and field study. The results of the study were summarized as fallows: 1) About 89% of respondents responded positively on the need to establish automatic control system using internet. 2) The greenhouse management and environmental control system using internet was possible to control the greenhouse in remote, automatic, and simultaneous manner, and additionally by cellular phone in emergent situation. 3) The system was possible to precisely control the greenhouse environment, and it was able to connect the environmental control data with information on growth of crops. 4) By networking the farmer, extension educator of agricultural technology center and researcher, web based farm consulting was possible through the system. Based on the results of the study recommendations were suggested as follows: 1) Thorough spot inspections and field trials should be performed before the diffusion of this system. 2) The costs of the system installation and maintenance should be moderate. 3) The operation of the system should be simple and easy for tamers to adopt. 4) National support should be made to build better internet infrastructure in rural areas.

  • PDF

Capacity Design of a Gateway Router for Smart Farms

  • Lee, Hoon
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.1
    • /
    • pp.31-37
    • /
    • 2018
  • In this work, we propose an analytic framework for evaluating the quality of service and dimensioning the link capacity in the gateway router of a smart farm with a greenhouse eco-management system. Specifically, we focus on the gateway router of an IoT network that provides an access service for smart farms. We design the link capacity of a gateway router that is used for the remote management of the greenhouse eco-management system to accommodate both time-critical and delay-tolerant traffic in a greenhouse LAN. For this purpose, we first investigate the ecosystem for smart farm, and we define the specification and requirements of the greenhouse eco-management system. Second, we propose a system model for the link capacity of a gateway that is required to guarantee the delay performance of time-critical applications in the greenhouse LAN. Finally, the validity of the proposed system is demonstrated through a series of numerical experiments.

Implementation of Greenhouse Environment Monitoring System based on Wireless Sensor Networks (무선센서네트워크 기반 온실환경 모니터링 시스템 구현)

  • Lee, Young-Dong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.11
    • /
    • pp.2686-2692
    • /
    • 2013
  • In this paper, various growth environment data collecting and monitoring based on wireless sensor network for greenhouse environmental monitoring system is designed and implemented. In addition, greenhouse control system is proposed to integrated control and management in internal environment and greenhouse facilities. The system provides real-time remote greenhouse integrated management service which collects greenhouse environment information and controls greenhouse facilities based on wireless sensor network. Graphical user interface for an integrated management system is designed based on the HMI and the experimental results show that the sensor data were collected by integrated management in real-time.

Implementation of Ubiquitous Greenhouse Management System Using Sensor Network (센서 네트워크를 활용한 유비쿼터스 온실관리시스템 구현)

  • Seo, Jong-Seong;Kang, Min-Su;Kim, Young-Gon;Sim, Chun-Bo;Joo, Su-Chong;Shin, Chang-Sun
    • Journal of Internet Computing and Services
    • /
    • v.9 no.3
    • /
    • pp.129-139
    • /
    • 2008
  • This paper proposes a Ubiquitous Greenhouse Management System (UGMS) based on USN(Ubiquitous Sensor Network) which can be real-time monitoring and controlling of greenhouse's facilities by collecting environment and soil information with environment and soil sensors, and CCTV camera. The existing systems were controlled simply by temperature. Also, it was possible to monitor only at control room in a greenhouse. For solving problems of the exiting system, our system can remotely monitor and control greenhouse by considering environment information. The detail components are as follows. The system includes the sensor manager and the CCTV manager to gather and manage greenhouse information with soil and the environment sensors, and camera. Also the system has the greenhouse database storing greenhouse information and the greenhouse server transmitting greenhouse information to the GUI and controlling greenhouse. Finally, the GUI showing greenhouse condition to users exists in our system. To verify the executability of the UGMS, after developing the greenhouse model, we confirmed that our system could monitor and control the greenhouse condition at remote GUI by applying the UGMS's components to the model.

  • PDF

A Study on Counter Strategy of GHG·Energy Target Management System for Construction Firm (건설회사의 온실가스·에너지 목표관리제 대응전략 분석에 관한 연구)

  • Roh, Seung-Jun;Tae, Sung-Ho;Kim, Tae-Hyoung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.135-136
    • /
    • 2012
  • The purpose of this study is to analysis of counter strategy of greenhouse gas·energy target management system for the construction firm. For this purpose, the greenhouse gas·energy target management system of other industries was investigated. The selection possibility that is construction firm to be managed company was analyzed. In addition, status of counter strategy on the greenhouse gas·energy target management system were investigated and analyzed about 5 domestic major construction firm via questionnaire and interview. As a result, the counter strategy by organization and annual for the greenhouse gas·energy target management system was drawn.

  • PDF

A Study on Intellgence Emergency Guide Line System (지능형 피난유도선 시스템에 대한 연구)

  • Park, Yong-Gyu;Kim, Suk-Eun;Kang, Kyung-Sik
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2010.04a
    • /
    • pp.107-116
    • /
    • 2010
  • Government and company are unfolding greenhouse gas reduction activity to prevent the effects of global warming. Also, verification business through greenhouse gas inventory construction is spreaded variously. Greenhouse gas verification proceeds by document examination, risk analysis, field survey. Document investigates emission information, calculation standard, emission report, data management system. And through risk assessment result, establish field verification plan. Through study on risk assessment of greenhouse gas inventory verification, wish to reduce risk of verification.

  • PDF

Implementation of Complex Growth-environment Control System in Greenhouse (온실 복합생장환경 관제 시스템 구현)

  • Cho, Hyun Wook;Cho, Jong Sik;Park, In Gon;Seo, Beom Seok;Kim, Chan Woo;Shin, Chang Sun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.7 no.1
    • /
    • pp.1-9
    • /
    • 2011
  • In this paper, Wireless sensor network technology applied to various greenhouse agro-industry items such as horticulture and local specialty etc., we was constructed automatic control system for optimum growth environment by measuring growth status and environmental change. existing monitoring systems of greenhouse gather information about growth environment depends on the temperature. but in this system, Can be efficient collection and control of information to construct wireless sensor network by growth measurement sensor and environment monitoring sensor inside of the greenhouse. The system is consists of sensor manager for information processing, an environment database that stores information collected from sensors, the GUI of show the greenhouse status, it gather soil and environment information to soil and environment(including weather) sensors, growth measurement sensor. In addition to support that soil information service shows the temperature, moisture, EC, ph of soil to user through the interaction of obtained data and Complex Growth Environment information service for quality and productivity can prevention and response by growth disease or disaster of greenhouse agro-industry items how temperature, humidity, illumination acquiring informationin greenhouse(strawberry, ginseng). To verify the executability of the system, constructing the complex growth environment measurement system using wireless sensor network in greenhouse and we confirmed that it is can provide our optimized growth environment information.

The Domestic Response Strategies for the Mutual Recognition Arrangement System to Greenhouse Gas (온실가스 국제상호인정 체계에 관한 국내대응방안)

  • Lee, Hae-Jung;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.3
    • /
    • pp.83-91
    • /
    • 2017
  • Climate change has been identified as one with the greatest challenges facing nations, government, business and over future decades. Activities to reduce greenhouse gas emissions by the Kyoto Protocol, the international community has been in progress. Korea also has introduced the Emission trading system to reduce greenhouse emission from the supervision of the government. Greenhouse gases emissions quantity should be internationally recognized. Mutual Recognition Arrangement should be recognized as the same greenhouse gas emission. International recognition of domestic verification body of international mutual recognition is required. Efforts are needed to secure the equivalence between the emission rights through direct cooperation with the relative nation accreditation body. Early entry into the IAF/PAC GHG MLA is essential for demonstrating equivalence between greenhouse gas emissions. Emissions trading will also require connection to the EU ETS, California, USA, and Tokyo, Japan to link Emissions trading. In the case of establishing accreditation standards and accreditation criteria, it will be necessary to distinguish between the domestic Energy Target Management System and the Emission Trading System. Independent greenhouse gases verification bodies should be established to meet the requirements of IAF and PAC. It is necessary to revise the qualification criteria for the verification of the greenhouse gas verification body according to international standards requirements. It is necessary to support the role of accreditation bodies of domestic greenhouse gas verification bodies. It is required to join international organizations of international mutual recognition of international trade and the need for pilot projects to link greenhouse gas emissions. The core link to our emission trading system is called EU-ETS, and we will need to join the IAF/PAC GHG MLA GHG. The International Mutual Recognition Agreement (IAF) is expected to allow international interoperability of GHG emissions verification between EA and the PAC. By signing a PAC GHG MLA, it will need to be prepared to prepare for the pilot project to link the emission trading system.