• Title/Summary/Keyword: Grid connected

Search Result 1,221, Processing Time 0.038 seconds

Control Strategy for a Grid Stabilization of a Large Scale PV Generation System based on German Grid Code (독일 계통 연계 규정에 기반 된 대용량 태양광 발전 시스템의 계통 안정화를 위한 제어 전략)

  • Bae, Young-Sang;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.41-50
    • /
    • 2014
  • The rising penetration of renewable energy resulted in the development of grid-connected large-scale power plants. Therefore, grid stabilization, which depends on the system-type or grid of each country, plays an important role and has been strengthened by different grid codes. With this background, VDE-AR-N 4105 for photovoltaic (PV) systems connected to the low-voltage grid and the German Association of Energy and Water Industries (BDEW) introduced the medium-voltage grid code for connecting power plants to the grid and they are the most stringent certifications. In this paper, an optimal control strategy scheme for three-phase grid-connected PV system is enhanced with VDE-AR-N 4105 and BDEW grid code, where both active/reactive powers are controlled. Simulation and experimental results of 100kW PV inverter are shown to verify the effectiveness of the proposed implemental control strategy.

DC offset Compensation Algorithm with Fast Response to the Grid Voltage in Single-phase Grid-connected Inverter (단상 계통 연계형 인버터의 빠른 동특성을 갖는 계통 전압 센싱 DC 오프셋 보상 알고리즘)

  • Han, Dong Yeob;Park, Jin-Hyuk;Lee, Kyo-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.1005-1011
    • /
    • 2015
  • This paper proposes the DC offset compensation algorithm with fast response to the sensed grid voltage in the single-phase grid connected inverter. If the sensor of the grid voltage has problems, the DC offset of the grid voltage can be generated. This error must be resolved because the DC offset can generate the estimated grid frequency error of the phase-locked loop (PLL). In conventional algorithm to compensate the DC offset, the DC offset is estimated by integrating the synchronous reference frame d-axis voltage during one period of the grid voltage. The conventional algorithm has a drawback that is a slow dynamic response because monitoring the one period of the grid voltage is required. the proposed algorithm has fast dynamic response because the DC offset is consecutively estimated by transforming the d-axis voltage to synchronous reference frame without monitoring one cycle time of the grid voltage. The proposed algorithm is verified from PSIM simulation and the experiment.

A Study on Operation Algorithm of Grid-Connected 3-Level NPC Inverter Considering Common-Mode Voltage and THD (공통 모드 전압 및 THD를 고려한 계통연계형 3레벨 NPC 인버터의 운용 알고리즘 연구)

  • Hye-Cheon Kim;Jung-Wook Park
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.28 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • A grid-connected 3-level NPC inverter is a power conversion device that connects renewable energy generators, such as photovoltaic or wind turbines to the grid. Although many studies have focused on this inverter, commercializing it requires strictly satisfying various safety and power quality-related standards. Among many standards, leakage current and grid current total harmonic distortion(THD) can be affected by external factors such as installation environment, aging, and grid conditions. Hence, inverter operations that can satisfy these standards need to be explored. In this study a 3-level NPC inverter operation algorithm using the Phase Opposition Disposition-PWM method that can effectively reduce leakage current and switching frequency adjustment to reduce THD effectively has been proposed.

A Smooth LVRT Control Strategy for Single-Phase Two-Stage Grid-Connected PV Inverters

  • Xiao, Furong;Dong, Lei;Khahro, Shahnawaz Farhan;Huang, Xiaojiang;Liao, Xiaozhong
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.806-818
    • /
    • 2015
  • Based on the inherent relationship between dc-bus voltage and grid feeding active power, two dc-bus voltage regulators with different references are adopted for a grid-connected PV inverter operating in both normal grid voltage mode and low grid voltage mode. In the proposed scheme, an additional dc-bus voltage regulator paralleled with maximum power point tracking controller is used to guarantee the reliability of the low voltage ride-through (LVRT) of the inverter. Unlike conventional LVRT strategies, the proposed strategy does not require detecting grid voltage sag fault in terms of realizing LVRT. Moreover, the developed method does not have switching operations. The proposed technique can also enhance the stability of a power system in case of varying environmental conditions during a low grid voltage period. The operation principle of the presented LVRT control strategy is presented in detail, together with the design guidelines for the key parameters. Finally, a 3 kW prototype is built to validate the feasibility of the proposed LVRT strategy.

Resonance Characteristics Analysis of Grid-connected Inverter Systems based on Sensitivity Theory

  • Wu, Jian;Han, Wanqin;Chen, Tao;Zhao, Jiaqi;Li, Binbin;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.746-756
    • /
    • 2018
  • Harmonic resonance exists in grid-connected inverter systems. In order to determine the network components that contribute to harmonic resonance and the composition of the resonant circuit, sensitivity theory is applied to the resonance characteristic analysis. Based on the modal analysis, the theory of sensitivity is applied to derive a formula for determining the sensitivities of each network component parameter under a resonance circumstance that reflects the participation of the network component. The solving formula is derived for both parallel harmonic resonance and series harmonic resonance. This formula is adopted to a 4-node grid-connected test system. The analysis results reveal that for a certain frequency, the participation of parallel resonance and series resonance are not the same. Finally, experimental results demonstrate that the solving formula for sensitivity is feasible for grid-connected systems.

Design of LCL Filter through Inductor Optimization Method in Grid-Connected Inverter (계통연계 인버터의 인덕터 최적화 기법을 통한 LCL 필터 설계)

  • Jang, Jae-Ha;Kim, Kyeong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.11
    • /
    • pp.58-67
    • /
    • 2014
  • A grid-connected inverter used for renewable energy resources produces harmonic components in the switching frequency. To effectively reduce switching harmonic components, several types of filter are generally used in the output stage of the grid-connected inverter. Many research works on LCL filter design have been done to maintain the performance with low cost. However, it is not easy to make the filter design be economical and optimal due to the varying characteristic of magnetic core and redundancy design by experience. In this paper, a design method for a LCL filter is presented through the inductor optimization scheme in view of the size and cost when the inductor is manufactured using the magnetic core. The effectiveness is verified through tests using a 3kW grid-connected inverter by simulations and experiments.

Design Factor Calculation and Analysis of Grid-Connected Photovoltaic System (계통연계형 태양광발전시스템의 설계계수 산출분석)

  • So, Jung-Hun;Hwang, Hye-Mi;Jung, Young-Seok;Ko, Suk-Whan;Ju, Young-Chul;Lim, Hyun-Mook
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.5
    • /
    • pp.89-94
    • /
    • 2013
  • This paper presents a simple but valid design factor calculation method of grid-connected photovoltaic system using normalized yield model. The proposed calculation method can be represented as a quantitative value about five design factors from irradiance to system output power. The validity of this method is identified by analyzing design factor with three years monitored data. These results will indicate that it is useful to determine the optimal design and selection of grid-connected photovoltaic system to meet different user purposes and enhance long-term reliability and stability of grid-connected photovoltaic system.

Inquiry of New Topology for Grid-connected Photovoltaic Inverter (PV용 계통연계형 인버터의 새로운 Topology 고찰)

  • 정영석;유권종
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.248-251
    • /
    • 1999
  • Recently, according to developing industry and life style, power consumption have been increased year after year. Currently these much power demand from power consumer is weakening the allowable power reverse margin in summer. As on of the remedies about this problem, the small scale grid-connected photovoltaic system is considered for auxiliary power source. Generally, grid-connected inverter have a isolation transformer for electrical isolation from utility. This paper propose transformerless system topology an inquiry the validity using simulation.

  • PDF

Filter Design for Grid-Connected Single-Phase Inverters

  • Kim, Hyo-Sung
    • Journal of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.623-630
    • /
    • 2009
  • This paper proposes a filter design guideline for grid-connected single-phase inverters. By analyzing the instantaneous voltage applied to the filter inductor, the switching ripple current through the filter inductor can be precisely calculated. Therefore, filter inductance can be designed accurately, which guaranties that the switching ripple current will be under the target value. The proposed filter design method is verified by experiment.

Control of Single-Phase Grid-Connected Photovoltaic System using a Z-Source Inverter (Z-소스 인버터를 사용한 단상 계통 연계형 태양광 시스템 제어)

  • Chun, Tae-Won;Tran, Quang-Vinh;Kim, Heung-Geun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.369-375
    • /
    • 2008
  • In this paper, a method for controlling the a single-phase grid-connected photovoltaic(PV) system using Z-source inverter (ZSI) is proposed. The operating region of grid-connected ZSI system with a variation of PV output voltage are analyzed by considering the voltage stress across switching devices. The switching patterns for controlling effectively the shoot-through time while reducing the switching loss are suggested. Both the simulation studies and experimental results with 32-bit DSP are carried out to verify the performances of proposed system.