• Title/Summary/Keyword: Grid-connected inverter

Search Result 501, Processing Time 0.023 seconds

Dual Current Control Scheme of a Grid-connected Inverter for Power Quality Improvement in Distributed Generation Systems (분산 전원 시스템의 전력품질 향상을 위한 계통연계 인버터의 이중 전류제어 기법)

  • Kim, Kyeong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.9
    • /
    • pp.33-41
    • /
    • 2015
  • To improve the power quality of distributed generation (DG) systems even in the presence of distorted grid condition, dual current control scheme of a grid-connected inverter is proposed. The proposed current control scheme is achieved by decomposing the inverter state equations into the fundamental and harmonic components. The derived models are employed to design dual current controllers. The conventional PI decoupling current controller is used in the fundamental model to control the main power flow in DG systems. At the same time, the predictive control is applied in the harmonic model to suppress undesired harmonic currents to zero quickly. To decompose the voltage inputs and state variables into the fundamental and harmonic components, the fourth order band pass filter (BPF) is designed in the discrete-time domain for a digital implementation. For experimental verification, 2kVA prototype of a grid-connected inverter has been constructed using digital signal processor (DSP) TMS320F28335. The effectiveness of the proposed strategy is demonstrated through comparative simulation and experimental results.

Grid Connected Photovoltaic Inverter System Using a New Zero-Current- Transition Scheme (새로운 Zero-Current-Transition 기법을 이용한 계통 연계형 태양광 발전 인버터 시스템)

  • Choi, Young-Deok;Lee, Dong-Yun;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.213-215
    • /
    • 2002
  • This paper presents grid connected photovoltaic inverter system using a new Zero-Current-Transition(ZCT) technique. The main switches of the proposed grid connected inverter are turned off under the zero current condition by operating the auxiliary circuit and also all semiconductor devices, switches and diodes, are applied to low rated voltage regardless of the load condition. In additionally, the proposed ZCT scheme has advantages, which are without the additional current stresses and the conduction losses on the main switches during the resonance period of the auxiliary circuit. The simulation was performed to verify the validity of the proposed grid connected photovoltaic ZCT inverter system.

  • PDF

Robust control of grid-connected inverter systems using neural networks

  • Huh, Sung-Hoe;Ko, Moon-Ju;Park, Gui-Tae;Choy, Ick
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1371-1373
    • /
    • 2005
  • Recently, preparing the problems in connection with energy and environment, grid-connected power systems have been intensively researched in the world. In general, the output power of grid-connected inverter (GCI) contains noisy components of inverter switching frequency. Moreover, pre-existing grid voltage disturbances degrade the output power quality. The objective of this paper is to make a GCI output high quality power. A robust current control scheme using neural network is presented in thispaper. To show the feasibility of the proposed scheme, some simulation results are provided.

  • PDF

Design and Implementation of a Low Cost Grid-Connected 5 kVA Photovoltaic System with Load Compensation Capability

  • Mejdar, Reza Seifi;Salimi, Mahdi;Zakipour, Adel
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2306-2314
    • /
    • 2016
  • Design and implementation of a low cost grid-connected 5kVA solar photovoltaic (PV) system is proposed in this paper. Since the inverter is a major component of the PV system, the B4 inverter used in this paper reduces the total cost of the PV system. In order to eliminate the massive transformer, the PV system is connected to the grid through IGBT switches. In addition to injection of active power into the grid, the B4 inverter can compensate reactive power and reduce harmonics of the nonlinear loads. A TMS320F28335 DSP processor is used for effective control of the B4 inverter. Various features of this processor enable the implementation of the necessary control algorithms. As a first step, the PV system is simulated and evaluated in Matlab/Simulink. In the second step, hardware circuits are designed and implemented based on the simulation results. The operation of the PV system has been evaluated under balanced, unbalanced, linear and nonlinear loads which proves its accuracy and efficiency.

Performance Improvement of Grid-Connected Inverter Systems under Unbalanced and Distorted Grid Voltage by Using a PR Controller

  • Lee, Jong-Hyun;Jeong, Hae-Gwang;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.918-925
    • /
    • 2012
  • This paper proposes a control method for grid-connected inverter systems under unbalanced and distorted grid voltage. The proposed method can reduce the power ripple caused by the unbalanced condition and compensate for the low-order harmonics of the output currents caused by the distortion of grid voltage. To reduce the power ripple, our method replaces the two conventional PI controllers with one PR controllers in the stationary frame. PR controllers can implement selective harmonic compensation without excessive computational requirements; the use of these controllers simplifies the method. Both the simulated and experimental results agree well with the theoretical analysis.

Controller Design of Stand-Alone or Grid-Connected Inverter to Compensate Harmonics Caused by Nonlinear Load (비선형부하에 의해 발생하는 고조파 보상을 위한 독립형 또는 계통연계형 인버터 제어기 설계)

  • Sin, Chanho;Lim, Kyungbae;Petrus, Simatupang Desmon;Choi, Jaeho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.5
    • /
    • pp.440-448
    • /
    • 2017
  • This paper proposes a controller design of a distributed source inverter in stand-alone mode or grid-connected mode to compensate the current or voltage harmonics caused by local nonlinear load. The PR-based multi loop controller has been used to improve the dynamic performance of the system and to compensate the output voltage or grid current harmonics. The multi-loop controller consists of an outer current controller and an inner voltage controller for the output voltage control in stand-alone mode. In grid-connected mode, an outer current controller is added to the output voltage controller for the grid current control. The design performance of each controller is described through the Root locus and Bode plot of the transfer functions. The validity of the proposed control algorithm and design parameters has been verified through the PSiM simulation and experimental results.

A SRF Power Flow Control Method for Grid-Connected Single-Phase Inverter Systems (단상 계통연계 인버터의 SRF 전력제어 방법)

  • Park, Han-Eol;Kim, Eun-Seok;Song, Joong-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.5
    • /
    • pp.129-135
    • /
    • 2010
  • It is well known that distributed generation(DG) system using renewable energy is an alternative to solve the problems which result from the exhaustion of fossil fuel and the environmental pollution. A PWM inverter is required for a power flow control in the DG systems. This paper proposes a SRF power flow control method considering grid impedance in grid-connected single-phase inverter systems. The proposed SRF power flow control method can provide a voltage-reference for the single-phase inverter even without any grid impedance estimation so that the single-phase inverter system could operate in stand-alone mode and grid-connected mode based on the known nominal value of grid impedance. Also independent controls of active and reactive power are achieved by the proposed control method. The effectiveness and the validity of the proposed control method are demonstrated through simulations. The simulation results show that the proposed control method can control properly power flow in grid-connected single-phase inverter systems.

PLL Method Using The Improved Discrete Fourier Transform (개선된 DFT를 이용한 위상 추종방법)

  • Kim, Jae-Hyung;Ji, Young-Hyok;Won, Chung-Yuen;Jung, Yong-Chae
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.91-93
    • /
    • 2008
  • In this paper, novel phase angle following algorithm for the single phase grid-connected inverter is proposed. Gird-connected inverter needs phase angle detection for synchronization grid voltage with the inverter output. In case of single phase grid-connected inverter, zero crossing detection and virtual 2-phase PLL using digital all pass filter or digital low pass filter are used conventionally. But these methods have a weakness for harmonics, noises and ripples. The proposed method of PLL achieve DFT(Discrete Fourier Transform) using Goertzel algorithm. It can extract fundamental voltage of grid. As a results, it can obtain phase angle using digital all pass filter without effect of harmonics, noises and ripples. Simulation results are presented to demonstrate the effectiveness of the proposed algorithm.

  • PDF

Analytical and Experimental Validation of Parasitic Components Influence in SiC MOSFET Three-Phase Grid-connected Inverter

  • Liu, Yitao;Song, Zhendong;Yin, Shan;Peng, Jianchun;Jiang, Hui
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.591-601
    • /
    • 2019
  • With the development of renewable energy, grid-connected inverter technology has become an important research area. When compared with traditional silicon IGBT power devices, the silicon carbide (SiC) MOSFET shows obvious advantages in terms of its high-power density, low power loss and high-efficiency power supply system. It is suggested that this technology is highly suitable for three-phase AC motors, renewable energy vehicles, aerospace and military power supplies, etc. This paper focuses on the SiC MOSFET behaviors that concern the parasitic component influence throughout the whole working process, which is based on a three-phase grid-connected inverter. A high-speed model of power switch devices is built and theoretically analyzed. Then the power loss is determined through experimental validation.