• Title/Summary/Keyword: Grid-connected inverter

Search Result 502, Processing Time 0.037 seconds

Droop Control Scheme of a Three-phase Inverter for Grid Voltage Unbalance Compensation

  • Liu, Hongpeng;Zhou, Jiajie;Wang, Wei;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1245-1254
    • /
    • 2018
  • The stability of a grid-connected system (GCS) has become a critical issue with the increasing utilization of renewable energy sources. Under grid faults, however, a grid-connected inverter cannot work efficiently by using only the traditional droop control. In addition, the unbalance factor of voltage/current at the common coupling point (PCC) may increase significantly. To ensure the stable operation of a GCS under grid faults, the capability to compensate for grid imbalance should be integrated. To solve the aforementioned problem, an improved voltage-type grid-connected control strategy is proposed in this study. A negative sequence conductance compensation loop based on a positive sequence power droop control is added to maintain PCC voltage balance and reduce grid current imbalance, thereby meeting PCC power quality requirements. Moreover, a stable analysis is presented based on the small signal model. Simulation and experimental results verify the aforementioned expectations, and consequently, the effectiveness of the proposed control scheme.

Control of Single-Phase Grid-Connected Photovoltaic System using a Z-Source Inverter (Z-소스 인버터를 사용한 단상 계통 연계형 태양광 시스템 제어)

  • Chun, Tae-Won;Tran, Quang-Vinh;Kim, Heung-Geun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.369-375
    • /
    • 2008
  • In this paper, a method for controlling the a single-phase grid-connected photovoltaic(PV) system using Z-source inverter (ZSI) is proposed. The operating region of grid-connected ZSI system with a variation of PV output voltage are analyzed by considering the voltage stress across switching devices. The switching patterns for controlling effectively the shoot-through time while reducing the switching loss are suggested. Both the simulation studies and experimental results with 32-bit DSP are carried out to verify the performances of proposed system.

Analysis and Design of LCL Filter with Passive Damping Circuits for Three-phase Grid-connected Inverters

  • Ahn, Hyo Min;Oh, Chang-Yeol;Sung, Won-Yong;Ahn, Jung-Hoon;Lee, Byoung Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.217-224
    • /
    • 2017
  • The analysis and design process of the LCL filter with passive damping circuits for three-phase grid-connected inverter are presented based on the generalized model of LCL filter. Several types of the passive damping circuits in previous studies could be compared and analyzed by using the generalized model considering various design criteria of passive damping circuits. According to the analysis in this paper, a reasonable configuration of passive damping circuits for three-phase grid-connected inverters is proposed. The validity of the proposed design process is verified by informative simulation and experimental results.

Loss Analysis and Comparison of Grid-connected Bidirectional Inverter with Different Types of PWM Schemes (PWM 방식에 따른 계통연계 양방향 인버터의 손실양상 비교 및 분석)

  • Heo, Sung-Jun;Ahn, Hyo-Min;Byun, Jong-Eun;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.6
    • /
    • pp.547-550
    • /
    • 2017
  • This paper presents a loss analysis and compares three pulse width modulation (PWM) methods applied in a three-phase grid-connected bidirectional inverter for an energy storage system. The losses in switching devices and output low pass filters are theoretically analyzed by using PWM control techniques. Grid-connected bidirectional inverters are designed by using PWM techniques, and the designed inverters are simulated to verify the analysis results.

Seamless Mode Transfer of Indirect Current Controlled Parallel Grid-Connected Inverters (간접전류제어방식 병렬형 계통연계 인버터의 무순단 모드절환)

  • Song, Injong;Choi, Junsoo;Lim, Kyungbae;Choi, Jaeho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.5
    • /
    • pp.334-341
    • /
    • 2019
  • This study proposes the control strategy for the seamless mode transfer of indirect current controlled parallel grid-connected inverters. Under the abnormal grid condition, the grid-connected inverter can convert the operation mode from grid-connected to stand-alone mode to supply power to the local load. For a seamless mode transfer, the time delay problems caused by the accumulated control variable error must be solved, and the indirect current control method has been applied as one of the solutions. In this study, the design of control parameters for the proportional-resonant-based triple-loop indirect current controller and the control strategy for the seamless mode transfer of parallel grid-connected inverters are described and analyzed. The validity of the proposed mode transfer method is verified by the PSiM simulation results.

Single-Phase Seven-Level Grid-Connected Inverter Employing Digital PI Controller (디지털 PI 컨트롤을 사용한 단상 7레벨 연계형 인버터)

  • Le, Tuan-Vu;Choi, Woo-Seok;Park, Jin-Wook;Park, Sung-Jun
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.441-442
    • /
    • 2015
  • This paper proposes a new single-phase seven-level grid-connected inverter. Operational principle with switching function are analyzed. A digital proportional-integral current-control algorithm was implemented in a TMS320F28335 DSP to keep the current injected into the grid sinusoidal. To verify the performance of the proposed inverter, PSIM simulation and experimental results are also shown in this paper.

  • PDF

Small-Signal Modeling and Controller Design of Grid-Connected Inverter for Solid State Transformer (반도체 변압기용 단상 계통 연계형 인버터의 소신호 모델링과 제어기 설계)

  • Kim, Bo-Gyeong;Lee, Jun-Young;Lee, Soon-Sinl;Jung, Jee-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.40-47
    • /
    • 2017
  • In this paper, a small signal model for grid-connected inverter with unipolar pulse width modulation method is presented. Small-signal analysis allows to predict the stability and dynamics of the inverter. To regulate output voltage and to achieve power factor correction, inverter has two control loops. Loop gains are useful to identify the stability for multi-loop controlled system. Based on small-signal model, controllers are designed to improve audio susceptibility and output impedance characteristics. Proposed small-signal model and controllers are verified by PSIM simulation and experiments.

Implementation of Dual Current Controller and Realtime Power Limiting Algorithm in Grid-connected Inverter during Unbalanced Voltage Conditions (전원 전압 불평형시 계통연계형 인버터의 유효전력 리플 억제를 위한 듀얼 전류제어기 구현과 출력 전력의 실시간 제한 알고리즘)

  • Song Seung-Ho;Kim Jeong-Jae
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.1
    • /
    • pp.54-60
    • /
    • 2006
  • A power limiting algorithm is proposed for stable operation of grid-connected inverter in case of grid voltage unbalance considering the operation limit of inverter. During the voltage unbalance the control performance of Inverter. is degraded and the output power contains 120Hz ripple due to the negative sequence of voltage. In this paper, conventional dual sequence current controller is implemented to solve these problems using separated control of positive and negative sequence. Especially the maximum power limit which guarantees the maximum rated current of the inverter is automatically calculated as the instant grid voltage changes. As soon as the voltage recovers the proposed algorithm can return to the normal power control mode accomplishing low voltage ride through. Proposed algorithm is verifed using PSCAD/EMTDC simulations and tested experimentally at 4.4kW wind turbine simulator set-up.

Power Quality Improvement for Grid Connected Inverters under Distorted and Unbalanced Grids

  • Kim, Hyun-Sou;Kim, Jung-Su;Kim, Kyeong-Hwa
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1578-1586
    • /
    • 2016
  • A power quality improvement scheme for grid connected inverters, even in the presence of the disturbances in grid voltages due to harmonic distortions and three-phase imbalance, is presented for distributed generation (DG) power systems. The control objective is to force the inverter currents to follow their references with robustness even under external disturbances in grid voltages. The proposed scheme is realized by a disturbance observer (DOB) based current control scheme. Since the uncertainty in a system can be effectively canceled out using an estimated disturbance by the DOB, the resultant system behaves like a closed-loop system consisting of a disturbance-free nominal model. For experimental verification, a 2 kVA laboratory prototype of a grid connected inverter has been built using a digital signal processor (DSP) TMS320F28335. Through comparative simulations and experimental results under grid disturbances such as harmonic distortion and imbalance, the effectiveness of the proposed DOB based current control scheme is demonstrated.

A Dual Buck Three-Level PV Grid-Connected Inverter

  • Ji, Baojian;Hong, Feng;Wang, Jianhua;Huang, Shengming
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.910-919
    • /
    • 2015
  • The use of a PV grid-connected inverter with non-isolated topology and without a transformer is good for improving conversion efficiency; however, this inverter has become increasingly complicated for eliminating leakage current. To simplify the complicated architecture of traditional three-level dual buck inverters, a new dual Buck three-level PV grid-connected inverter topology is proposed. In the proposed topology, the voltage on the grounding stray capacitor is clamped by large input capacitors and is equal to half of the bus voltage; thus, leakage current can be eliminated. Unlike in the traditional topology, the current in the proposed topology passes through few elements and does not flow through the body diodes of MOSFET switches, resulting in increased efficiency. Additionally, a multi-loop control method that includes voltage-balancing control is proposed and analyzed. Both simulation and experimental results are demonstrated to verify the proposed structure and control method.