• Title/Summary/Keyword: Ground Clearance

Search Result 68, Processing Time 0.026 seconds

Feasibility study of an earth-retaining structure using in-situ soil with dual sheet piles

  • An, Joon-Sang;Yoon, Yeo-Won;Song, Ki-Il
    • Geomechanics and Engineering
    • /
    • v.16 no.3
    • /
    • pp.321-329
    • /
    • 2018
  • Classic braced walls use struts and wales to minimize ground movements induced by deep excavation. However, the installation of struts and wales is a time-consuming process and confines the work space. To secure a work space around the retaining structure, an anchoring system works in conjunction with a braced wall. However, anchoring cannot perform well when the shear strength of soil is low. In such a case, innovative retaining systems are required in excavation. This study proposes an innovative earth-retaining wall that uses in situ soil confined in dual sheet piles as a structural component. A numerical study was conducted to evaluate the stability of the proposed structure in cohesionless dry soil and establish a design chart. The displacement and factor of safety of the structural member were monitored and evaluated. According to the results, an increase in the clearance distance increases the depth of safe excavation. For a conservative design to secure the stability of the earth-retaining structure in cohesionless dry soil, the clearance distance should exceed 2 m, and the embedded depth should exceed 40% of the wall height. The results suggest that the proposed method can be used for 14 m of excavation without any internal support structure. The design chart can be used for the preliminary design of an earth-retaining structure using in situ soil with dual steel sheet piles in cohesionless dry soil.

A Study of the Spatial Composition and the Facility Criteria of In-patient Rooms in General Hospitals after MERS 2015 (2015년 메르스 사태 이후 신축된 종합병원 병동부의 공간구성 특징 및 입원실 세부시설기준에 관한 연구)

  • Lee, Hyunjin;Kwon, Soonjung
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.25 no.2
    • /
    • pp.27-35
    • /
    • 2019
  • Purpose: This study is to address the spacial composition of a standard ward and bedroom size for sake of infection control and efficient medical service. Methods: Spacial composition of a standard ward has been proposed by comparative analysis of 5 big hospitals' wards. Bedroom sizes have been explored on the ground of Health care facility regulations from Korea, USA, Australia and Canada. Of course, Literature and field survey have been conducted in order to draw out various bedroom sizes. Results: 16 basic and some other additional spaces have been proposed for the composition of hospital standard ward. Area of Single bedroom is $11.6m^2$, and that of multi-beded room is $7.4m^2$. Bed to bed Clearance is 1.5m, spacing between bedsize and hard wall is 0.9m in 1~2 beded room, 0.75m in 4-beded room. Space clearance between Foot side of bed and curtain is proposed as 0.3m and additional 0.9m is necessary for the circulation. Implications: The result of this study can be applied to the new cons.

Mean flow characteristics of two-dimensional wings in ground effect

  • Jung, Jae-Hwan;Yoon, Hyun-Sik;Chun, Ho-Hwan;Hung, Pham Anh;Elsamni, Osama Ahmed
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.2
    • /
    • pp.151-161
    • /
    • 2012
  • The present study numerically investigates the aerodynamic characteristics of two-dimensional wings in the vicinity of the ground by solving two-dimensional steady incompressible Navier-Stokes equations with the turbulence closure model of the realizable k-${\varepsilon}$ model. Numerical simulations are performed at a wide range of the normalized ground clearance by the chord length ($0.1{\leq}h/C{\leq}1.25$) for the angles of attack ($0^{\circ}{\leq}{\alpha}{\leq}10^{\circ}$) in the prestall regime at a Reynolds number (Re) of $2{\times}10^6$ based on free stream velocity $U_{\infty}$ and the chord length. As the physical model of this study, a cambered airfoil of NACA 4406 has been selected by a performance test for various airfoils. The maximum lift-to-drag ratio is achieved at ${\alpha}=4^{\circ}$ and h / C = 0.1. Under the conditions of ${\alpha}=4^{\circ}$ and h / C = 0.1, the effect of the Reynolds number on the aerodynamic characteristics of NACA 4406 is investigated in the range of $2{\times}10^5{\leq}Re{\leq}2{\times}10^9$. As Re increases, $C_l$ and $C_d$ augments and decreases, respectively, and the lift-to-drag ratio increases linearly.

Free surface effects on 2-D airfoils and 3-D wings moving over water

  • Bal, Sakir
    • Ocean Systems Engineering
    • /
    • v.6 no.3
    • /
    • pp.245-264
    • /
    • 2016
  • The iterative boundary element method (IBEM) developed originally before for cavitating two-dimensional (2-D) and three-dimensional (3-D) hydrofoils moving under free surface is modified and applied to the case of 2-D (two-dimensional) airfoils and 3-D (three-dimensional) wings over water. The calculation of the steady-state flow characteristics of an inviscid, incompressible fluid past 2-D airfoils and 3-D wings above free water surface is of practical importance for air-assisted marine vehicles such as some racing boats including catamarans with hydrofoils and WIG (Wing-In-Ground) effect crafts. In the present paper, the effects of free surface both on 2-D airfoils and 3-D wings moving steadily over free water surface are investigated in detail. The iterative numerical method (IBEM) based on the Green's theorem allows separating the airfoil or wing problems and the free surface problem. Both the 2-D airfoil surface (or 3-D wing surface) and the free surface are modeled with constant strength dipole and constant strength source panels. While the kinematic boundary condition is applied on the airfoil surface or on the wing surface, the linearized kinematic-dynamic combined condition is applied on the free surface. The source strengths on the free surface are expressed in terms of perturbation potential by applying the linearized free surface conditions. No radiation condition is enforced for downstream boundary in 2-D airfoil and 3-D wing cases and transverse boundaries in only 3-D wing case. The method is first applied to 2-D NACA0004 airfoil with angle of attack of four degrees to validate the method. The effects of height of 2-D airfoil from free surface and Froude number on lift and drag coefficients are investigated. The method is also applied to NACA0015 airfoil for another validation with experiments in case of ground effect. The lift coefficient with different clearance values are compared with those of experiments. The numerical method is then applied to NACA0012 airfoil with the angle of attack of five degrees and the effects of Froude number and clearance on the lift and drag coefficients are discussed. The method is lastly applied to a rectangular 3-D wing and the effects of Froude number on wing performance have been investigated. The numerical results for wing moving under free surface have also been compared with those of the same wing moving above free surface. It has been found that the free surface can affect the wing performance significantly.

Prototype Development of a Three-wheel Riding Cultivator and Its Basic Performance

  • Lee, Beom Seob;Yoo, Soonam;Lee, Changhoon;Choi, Il Su;Choi, Yong;Yun, Young Tae
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.285-295
    • /
    • 2018
  • Purpose: The aim of this study is to develop a three-wheel riding cultivator for improving the performance of the current four-wheel riding cultivators in the market. Methods: A prototype three-wheel riding cultivator with the rated power of 15.5-kW, a primary hydrostatic and a two-speed selective gear transmission shifts, front/rear three-wheel drive, a hydraulic wheel tread adjustment, and the mid-section attachment of the major implements was designed and constructed. Its specifications and basic performance are investigated. Results: The maximum speeds of the prototype at the low and high stages were measured to be approximately 7.31, and 11.29 km/h in forward travel, respectively, and approximately 3.60, and 6.37 km/h in rearward travel, respectively. The minimum ground clearance is shown to be 670 mm. The rotating speeds of the power takeoff (PTO) shaft at the low and high stages are shown to be approximately 795 and 1,140 rpm, respectively. The tread of the rear wheels, the minimum radius of turning, and the maximum lifting height of the parallel link device are measured to be within 1,320-1,720 mm, 2.80 m, and 390 mm, respectively. Approximately 25.3% and 74.7% of the total weight of the prototype are distributed in the front and rear wheels on flat ground, respectively. When the tread of rear wheels increased from 1,320 to 1,720 mm, the left and right static lateral overturning angles increased from $33.4^{\circ}$ to $39.1^{\circ}$ and from $29.0^{\circ}$ to $36.1^{\circ}$, respectively. Conclusions: The prototype three-wheel riding cultivator showed a wide range of travel and PTO speeds, high minimum ground clearance, small minimum radius of turning, and easy control of the rear wheel tread. Further, the easy observation of cultivating operations by mid-mounting the implements can improve quality of work. Therefore, the prototype is expected to contribute to the riding mechanization of cultivating operations for various upland crops in Korea.

Development of Low Altitude Terrain Following System based on TERain PROfile Matching (TERPROM 기반의 저고도 지형추적시스템 개발)

  • Kim, Chong-sup;Cho, In-je;Lee, Dong-Kyu;Kang, Im-Ju
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.9
    • /
    • pp.888-897
    • /
    • 2015
  • A flight capability to take a terrain following flight near the ground is required to reduce the probability that a fighter aircraft can be detected by foe's radar fence in the battlefield. The success rate for mission flight has increased by adopting TFS (Terrain Following System) to enable the modern advanced fighter to fly safely near the ground at the low altitude. This system has applied to the state-of-the-art fighter and bomber, such as B-1, F-111, F-16 E/F and F-15, since the research begins from 1960's. In this paper, the terrain following system and GCAS (Ground Collision Avoidance System) was developed, based on a digital database with UTAS's TERPRROM (TERrain PROfile Matching) equipment. This system calculates the relative location of the aircraft in the terrain database by using the aircraft status information provided by the radar altimeter and the INS (Inertial Navigation System), based on the digital terrain database loaded previously in the DTC (Data Transfer Cartridge), and figures out terrain features around. And, the system is a manual terrain following system which makes a steering command cue refer to flight path marker, on the HUD (Head Up Display), for vertical acceleration essential for terrain following flight and enables a pilot to follow it. The cue is based on the recognized terrain features and TCH (Target Clearance Height) set by a pilot in advance. The developed terrain following system was verified in the real-time pilot evaluation in FA-50 HQS (Handling Quality Simulator) environment.

Analysis of Propeller-WIG Interaction and Performance in Potential Flow (포텐셜 유동에 의한 프로펠러-WIG선의 상호작용 및 성능해석)

  • H.H. Chun;M.G. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.4
    • /
    • pp.11-22
    • /
    • 2001
  • The interaction between forward mounted propeller and wing in ground effect, and its aerodynamic performance are analyzed by potential flow approximation. A Vortex Lattice Method(VLM) for the propeller analysis and a potential based panel method for the WIG are used together with an image method by assuming the free surface as a rigid wall. The interaction of propeller and wing in the proximity of the ground is taken into account by an iterative procedure where the boundary conditions are satisfied with the given convergence criteria. The program developed is first checked by comparing its numerical results with the experimental data and other numerical results for the propeller MP101-rudder MR21 system. Then, the propeller-WIG interaction and its performance versus ground clearance are investigated by changing parameters such as propeller position, diameter and speed of revolution. It is shown that the forward mounted propeller increases the lift forces of the wing and also enhances the height stability, depending on the design parameter. Therefore, the appropriate selection of the design parameter such as propeller diameter, revolution, the longitudinal and vertical position of propeller is necessary.

  • PDF

Development of Variable Rate Granule Applicator for Environment-Friendly Precision Agriculture (I) - Concept Design of Variable Rate Pneumatic Granule Applicator and Manufacture of Prototype - (친환경 정밀농업을 위한 입제 변량살포기 개발 (I) - 송풍식 입제 변량살포기 개념설계와 시작기 제작 -)

  • Ryu K.H.;Kim Y.J.;Cho S.I.;Rhee J.Y.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.4 s.117
    • /
    • pp.305-314
    • /
    • 2006
  • Precision farming has been known as an environment friendly farming technology. This study was conducted to develop a variable-rate granule fertilizer applicator as an attempt for introducing the precision farming technologies to rice cultivation in Korea. In this paper, concept design process and manufacturing of prototype variable rate granule applicator was reported. For concept design, some design guide lines were selected. Based on the design guide line and some engineering knowledge, concept design was conducted. The designed prototype granule applicator was mounted at the rear of riding type cultivator for paddy field and had a 10m wide boom structure with pneumatic conveying and application system as well as 1GPS receiver, 1 granule hopper, 12 blow heads, 2 metering devices and 1 controller. The fertilizer applicator had 942 ka of weight, 740m of ground clearance and 1,117mm of center of gravity from the ground. The applicator was designed to be able to $34{\sim}428kg/ha$ of granule at $0.2{\sim}0.8m/s$ of fertilizer working speed.

The Flashover Characteristics of Test Electrodes against Clearance of Air Insulation for 765kV Transmission Line (765kV급 송전선로 공기절연거리 설정을 위한 시험전극의 섬락전압 특성)

  • Kim, Y.T.;Kim, Y.B.;Lee, H.H.;Kim, J.M.;Kim, J.B.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1337-1340
    • /
    • 1995
  • For the purpose of rational design of air insulation, it is need to experiment with similar to real shape test object and conform the characterisics. But basic distances of air insulation of transmission line, tower, etc. can be acquired from flashover characteristic of rod-rod, rod-plane electrodes. In this paper, before field test of 765kV transmission line for determination of distances of phase to ground insulation, we execute lightning, switching impulse test with test electrod(rod-rod, rod-plane) against clearances of air insulation. Each tests use up-down method and consist of 30 times flashover test. Flashover data treatment program and air correction program following IEC 60-1(1987) standard were completely builted.

  • PDF

Miniaturization of Dual-Band PIFA for Wireless LAN Communication

  • Liu, Yang;Lee, Jaeseok;Jeon, Sinhyung;Jung, Kyung-Young;Kim, Hyunghoon;Kim, Hyeongdong
    • ETRI Journal
    • /
    • v.35 no.3
    • /
    • pp.530-533
    • /
    • 2013
  • In this letter, a simple method for reducing the size of a dual-band planar inverted-F antenna (PIFA) is described. This method is based on a coupling capacitor connected in parallel to the PIFA feed conductor. The proposed antenna occupies a small ground clearance of $10mm{\times}5mm$ and is able to provide -10-dB impedance bandwidths of 120 MHz and 760 MHz for 2.45-GHz and 5.5-GHz wireless local area network applications, respectively. The measured antenna efficiencies are 71.8% and 73.6%, averaged over the 2.45-GHz and 5.5-GHz frequency bands, respectively.