• 제목/요약/키워드: Ground effective thermal Conductivity

검색결과 42건 처리시간 0.038초

지중열교환기 설치 조건이 지중 유효 열전도도에 미치는 영향 (Effect of Some Parameters on Ground Effective Thermal Conductivity)

  • 최재호;임효재;공형진;손병후
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.33-38
    • /
    • 2008
  • A ground-loop heat exchanger in a ground source heat pump system is an important unit that determines the thermal performance of a system and its initial cost. The Size and performance of this heat exchanger is highly dependent on ground thermal properties. A proper design requires certain site-specific parameters, most importantly the ground effective thermal conductivity, the borehole thermal resistance and the undisturbed ground temperature. This study was performed to investigate the effect of some parameters such as borehole lengths, various grouting materials and U-tube configurations on ground effective thermal conductivity. In this study, thermal response tests were conducted using a testing device with 9-different ground-loop heat exchangers. From the experimental results, the length of ground-loop heat exchanger affects to the effective thermal conductivity. Among the various grouting materials, the bentonite-based grout with silica sand shows the largest thermal conductivity value.

  • PDF

지중열교환기 설치 조건이 지중 유효 열전도도와 보어홀 열저항에 미치는 영향 (The Effects of the Installation Conditions of Ground Loop Heat Exchanger to the Thermal Conductivity and Borehole Resistance)

  • 임효재;공형진;강성재;최재호
    • 설비공학논문집
    • /
    • 제23권2호
    • /
    • pp.95-102
    • /
    • 2011
  • A ground loop heat exchanger in a ground source heat pump system is an important unit that determines the thermal performance of a system and its initial cost. A proper design requires certain site specific parameters, most importantly the ground effective thermal conductivity, the borehole thermal resistance and the undisturbed ground temperature. This study was performed to investigate the effect of some parameters such as borehole lengths, various grouting materials and U tube configurations on ground effective thermal conductivity and borehole thermal resistance. In this study, thermal response tests were conducted using a testing device to 9 different ground loop heat exchangers. From the experimental results, the length of ground loop heat exchanger affects to the effective thermal conductivity. The results of this experiment shows that higher thermal conductivity of grouting materials leads to the increase effective thermal conductivity from 22 to 32%. Also, mounting spacers have increased by 14%.

그라우팅 재료가 지중 유효열전도도에 미치는 영향 (Effect of Grouting Materials on Ground Effective Thermal Conductivity)

  • 손병후
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3371-3376
    • /
    • 2007
  • The design of a ground-source heat pump system includes specifications for a ground loop heat exchanger where the heat transfer rate depends on the thermal conductivity of the ground. To evaluate this heat transfer property, in-situ thermal response tests on four vertical test boreholes with different grouting materials were conducted by adding a monitored amount of heat to water over various test lengths. By measuring the water temperatures entering and exiting the loop, water flow rate, and heat load, effective thermal conductivity values of the ground were determined. The effect of increasing thermal conductivity of grouting materials from 0.82 to 1.05 W/m$^{\circ}C$ resulted in overall increases in effective ground thermal conductivity by 25.8% to 69.5%.

  • PDF

밀폐형 지중열교환기 설계를 위한 지중 유효열전도도 데이터베이스 구축 (Construction of Ground Effective Thermal Conductivity Database for Design of Closed-Loop Ground Heat Exchangers)

  • 최재호;손병후;임효재
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.776-781
    • /
    • 2008
  • A ground heat exchanger in a GSHP system is an important unit that determines the thermal performance of a system and its initial cost. The Size and performance of this heat exchanger is highly dependent on the thermal properties. A proper design requires certain site-specific parameters, most importantly the ground effective thermal conductivity, the borehole thermal resistance and the undisturbed ground temperature. This paper is part of a research project aiming at constructing a database of these site-specific properties, especially ground effective thermal conductivity. The objective was to develop and evaluation method, and to provide this knowledge to design engineers. To achieve these goals, thermal response tests were conducted using a testing device at nearly 150 locations in Korea. The in-situ thermal response is the temperature development over time when a known heating load imposed, e.g. by circulating a heat carrier fluid through the test exchangers. The line-source model was then applied to the response test data because of its simplicity. From the data analysis, the range of ground effective thermal conductivity at various sites is $1.5{\sim}4.0\;W$/mK. The results also show that the ground effective thermal conductivity varies with grouting materials as well as regional geological conditions and groundwater flow.

  • PDF

지중열교환기 설치 조건이 지중 유효 열전도도에 미치는 영향에 관한 실험적 연구 (An Experimental Study on the Effect of Ground Heat Exchanger to the Overall Thermal Conductivity)

  • 공형진;임효재;최재호;손병후
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.45-51
    • /
    • 2009
  • A ground-loop heat exchanger in a ground source heat pump system is an important unit that determines the thermal performance of a system and its initial cost. The size and performance of this heat exchanger is highly dependent on ground thermal properties. A proper design requires certain site-specific parameters, most importantly the ground effective thermal conductivity, the borehole thermal resistance and the undisturbed ground temperature. This study was performed to investigate the effect of some parameters such as borehole lengths, various grouting materials and U-tube configurations on ground effective thermal conductivity. In this study, thermal response tests were conducted using a testing device with 9-different ground-loop heat exchangers. From the experimental results, the length of ground-loop heat exchanger affects to the effective thermal conductivity. Among the various grouting materials, the bentonite-based grout with silica sand shows the largest thermal conductivity value.

  • PDF

단순 선형열원 모델을 이용한 지중 유효 열전도도와 보어홀 유효 열저항 산정 (Evaluation of Ground Effective Thermal Conductivity and Borehole Effective Thermal Resistance from Simple Line-Source Model)

  • 손병후
    • 설비공학논문집
    • /
    • 제19권7호
    • /
    • pp.512-520
    • /
    • 2007
  • The design of a ground-source heat pump system includes specifications for a ground loop heat exchanger where the heat transfer rate depends on the effective thermal conductivity of the ground and the effective thermal resistance of the borehole. To evaluate these heat transfer properties, in-situ thermal response tests on four vertical test boreholes with different grouting materials were conducted by adding a monitored amount of heat to circulating water. The line-source method is applied to the temperature rise in an in-situ test and extended to also give an estimate of borehole effective thermal resistance. The effect of increasing thermal conductivity of the grouting materials from 0.818 to $1.104W/m^{\circ}C$ resulted in overall increases in effective thermal conductivity by 15.8 to 56.3% and reductions in effective thermal resistance by 13.0 to 31.1%.

지중열교환기 성능 향상에 관한 연구 (A Study on Improving the Efficiency of Ground Heat Exchanger)

  • 김욱중;이공훈;김민수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.3142-3147
    • /
    • 2008
  • A simple transient simulation of ground source heat pump system was carried out to investigate the effects of ground thermal conductivity on its performance. The TRNSYS code with a simple water to water heat pump model was used to compare the COP variation of the system. A new ground heat exchanger called by semi-closed loop was proposed and constructed in the real site. The effective thermal conductivity was measured using the test equipment developed by according to the line source model. The simulation results showed that highly efficient thermal conductivity of the grout material could increase the performance of the heat pump system very well. And the new ground heat exchanger showed the increased effective thermal conductivity as the penetration water flow rate(PWFR) was increased. Therefore, the performance improvement of the heat pump system using the proposed ground heat exchanger can be expected.

  • PDF

반밀폐형 지중열교환기 성능에 관한 실험적 연구 (An Experimental Study on the Performance of Semi-Closed Loop Ground Heat Exchanger)

  • 김욱중;염한길;이춘우
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.542-545
    • /
    • 2007
  • A semi-closed loop ground heat exchanger is proposed and its performance is compared through the measuring the effective thermal conductivity of the ground. In-situ tests based on the line source model are carried out to evaluate the thermal characteristics of each ground heat exchanger which has different penetration water flow rate. The test results show the increasing effective thermal conductivity of ground as the penetration water flow rate(PWFR) is increased. Therefore, the higher thermal performance of the proposed semi-closed ground heat exchanger can be expected.

  • PDF

지중열교환기 뒤채움재로 사용되는 모래-물 혼합물의 열전도도 예측 (Predicting the Effective Thermal Conductivity of Some Sand-Water Mixtures Used for Backfilling Materials of Ground Heat Exchanger)

  • 손병후
    • 설비공학논문집
    • /
    • 제20권9호
    • /
    • pp.614-623
    • /
    • 2008
  • This paper presents the results of a laboratory study on the thermal conductivity of and(silica, quartzite, limestone, sandstone, granite and two masonry sands)-water mixtures used for ground heat exchanger backfilling materials. Nearly 260 tests were performed in a thermal conductivity measuring system to characterize the relationships between the thermal conductivity of mixtures and the water content. The experimental results show hat the thermal conductivity of mixtures increases with increasing dry density and with increasing water content. The most widely used empirical prediction models for thermal conductivity of soils were found inappropriate to estimate the thermal conductivity of unsaturated sand-water mixtures. An improved model using an exponential relationship to compute the thermal conductivity of dry sands and empirical relationship to assess the normalized thermal conductivity of unsaturated sand-water mixtures is presented.

국내 지중열전도도 측정 방법의 한계 및 개선 방향 (Limitations and improvement of the in situ measurements of ground thermal conductivity in Korea)

  • 심병완
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.195.2-195.2
    • /
    • 2011
  • The borehole heat exchanger of Geothermal Heat Pump (GHP) system should be sustainable and cost effective for long term operation. To guaranty the performance of the system thermal Response Tests (TRTs) with simple recommended procedures have been applied in many countries. Korea government developed a standard TRT procedure in order to control the quality on GHP projects. In the TRT procedure interpretation method has a rule that data set has to be interpreted by the line source model(LSM). The LSM employes some assumptions that surrounding medium is homogeneous and the line source is infinite and constant heat flux, however real ground condition is unisotropic and heterogeneous, and showing regional or local ground water flows in many cases. We need to develope improved evaluation models to estimate accurate ground thermal conductivity with respect to geological and influence of ground water because current TRT standard test procedure has limitations to be applied for every locations and system. This study surveyed the uncertainty of the thermal parameters from the interpretation method considering different evaluation period. The interpretation of 208 TRT data sets represents limitations of LSM application that some obtained ground thermal conductivities are statistically unstable and convergence time of ground thermal conductivity over test period shows trends responding the length of test period. This evaluation study will be helpful to provide some effective procedure for the thermal parameter estimation and to complement current TRT standard procedure.

  • PDF