• Title/Summary/Keyword: Ground reaction force

Search Result 368, Processing Time 0.03 seconds

Comparison of Lower Extremity Electromyography and Ground Reaction Force during Gait Termination according to the Performance of the Stop Signal Task (정지신호과제의 수행에 따른 보행정지 시 다리 근전도 및 지면반발력 비교)

  • Koo, Dong-Kyun;Kwon, Jung-Won
    • PNF and Movement
    • /
    • v.20 no.1
    • /
    • pp.135-145
    • /
    • 2022
  • Purpose: The purpose of this study was to investigate the association between cognitive and motor inhibition by comparing muscle activity and ground reaction force during unplanned gait termination according to reaction time measured through the stop-signal task. Methods: Sixteen young adults performed a stop-signal task and an unplanned gait termination separately. The subjects were divided into fast and slow groups based on their stop-signal reaction time (SSRT), as measured by the stop-signal task. Electromyography (EMG) and ground reaction force (GRF) were compared between the groups during unplanned gait termination. The data for gait termination were divided into three phases (Phase 1 to 3). The Mann-Whitney U test was used to compare spatiotemporal gait parameters and EMG and GRF data between groups. Results: The slow group had significantly higher activity of the tibialis anterior in Phase 2 and Phase 3 than the fast group (p <0.05). In Phase 1, the fast group had significantly shorter time to peak amplitude (TPA) of the soleus than the slow group (p <0.05). In Phase 2, the TPA of the tibialis anterior was significantly lower in the fast group than the slow group (p <0.05). In Phase 3, there was no significant difference in the GRF between the two groups (p >0.05). There were no significant difference between the two groups in the spatiotemporal gait parameters (p >0.05). Conclusion: Compared to the slow group, the fast group with cognitive inhibition suppressed muscle activity for unplanned gait termination. The association between SSRT and unplanned gait termination shows that a participant's ability to suppress an incipient finger response is relevant to their ability to construct a corrective gait pattern in a choice-demanding environment.

The Evaluation of an additional Weight Shoe's Function developed for the Improvement of Aerobic Capacity (유산소 운동능력 향상을 위한 중량물 부가 신발의 기능성 평가)

  • Kwak, Chang-Soo;Kim, Hee-Suk
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.3
    • /
    • pp.67-82
    • /
    • 2004
  • The purpose of this study was to evaluate the function and the safety of an additional weight shoe developed for the improvement of aerobic capacity, and to improve some problems found by subject's test for an additional weight shoe. The subjects employed for this study were 10 college students. 4 video cameras, AMTI force platform and Pedar insole pressure distribution measurement device were used to analyze foot motions. The results of the study were as follows: 1 The initial achilles tendon angle and initial rearfoot pronation angle of an additional weight shoe during walking were 183.7 deg and 2.33 deg, respectively, and smaller than a barefoot condition. Maximum achilles tendon angle and the angular displacement of achilles tendon angle were 185.35 deg and 4.21 deg respectively, and smaller than barefoot condition. Thus rearfoot stability variables were within the permission value for safety. 2. Maximal anterior posterior ground reaction force of additional weight shoe was appeared to be 1.01-1.2 B.W., and was bigger than a barefoot condition. The time to MAPGRF of an additional weight shoe was longer than a barefoot condition. Maximal vertical ground reaction force of additional weight shoe was appeared to be 2.3-2.7 B.W., and was bigger than a barefoot condition in propulsive force region. But A barefoot condition was bigger in braking force region. The time to MVGRF of an additional weight shoe was longer than a barefoot condition. 3. Regional peak pressure was bigger in medial region than in lateral region in contrast to conventional running shoes. The instant of regional peak pressure was M1-M2-M7-M4-M6-M5 -M3, and differed form conventional running shoes. Regional Impulse was shown to be abnormal patterns. There were no evidences that an additional weight shoe would have function and safety problems through the analysis of rearfoot control and ground reaction force during walking. However, There appeared to have small problem in pressure distribution. It was considered that it would be possible to redesign the inner geometry. This study could not find out safety on human body and exercise effects because of short term research period. Therefore long term study on subject's test would be necessary in the future study.

Force Manipulability Analysis of Multi-Legged Walking Robot (다족 보행로봇의 동적 조작성 해석)

  • 조복기;이지홍
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.4
    • /
    • pp.350-356
    • /
    • 2004
  • This paper presents a farce manipulability analysis of multi-legged walking robots, which calculates force or acceleration workspace attainable from joint torque limits of each leg. Based on the observation that the kinematic structure of the multi-legged walking robots is basically the same as that of multiple cooperating robots, we derive the proposed method of analyzing the force manipulability of walking robot. The force acting on the object in multiple cooperating robot systems is taken as reaction force from ground to each robot foot in multi-legged walking robots, which is converted to the force of the body of walking robot by the nature of the reaction force. Note that each joint torque in multiple cooperating robot systems is transformed to the workspace of force or acceleration of the object manipulated by the robots in task space through the Jacobian matrix and grasp matrix. Assuming the torque limits are given in infinite norm-sense, the resultant dynamic manipulability is derived as a polytope. The validity of proposed method is verified by several examples, and the proposed method is believed to be useful for the optimal posture planning and gait planning of walking robots.

Wireless Wearable GRF Sensing System for Continuous Measurements (연속적 데이터 획득을 위한 착용형 무선 지면 반력 측정 시스템)

  • Lee, Dongkwan;Jeong, Yongrok;Gu, Gwang Min;Kim, Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.3
    • /
    • pp.285-292
    • /
    • 2015
  • This paper presents a wireless ground reaction force (GRF) sensing system for ambulatory GRF recording. The system is largely divided into three parts: force sensing modules based on optical sensor, outsole type frame, and embedded system for wireless communication. The force sensing module has advantages of the low height, robustness to the moment interference, and stable response in long term use. In simulation study, the strain and stress properties were examined to satisfy the requirements of the GRF sensing system. Four sensing modules were mounted on the toe, ball, and heel of foot shaped frame, respectively. The GRF signals were extracted using Micrpcontroller unit and transferred to the smart phone via Bluetooth communication. We measured the GRF during the normal walking for the validation of the continuous recording capability. The recorded GRF was comparable to the off the shelf stationary force plate.

Inertial Motion Sensing-Based Estimation of Ground Reaction Forces during Squat Motion (관성 모션 센싱을 이용한 스쿼트 동작에서의 지면 반력 추정)

  • Min, Seojung;Kim, Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.4
    • /
    • pp.377-386
    • /
    • 2015
  • Joint force/torque estimation by inverse dynamics is a traditional tool in biomechanical studies. Conventionally for this, kinematic data of human body is obtained by motion capture cameras, of which the bulkiness and occlusion problem make it hard to capture a broad range of movement. As an alternative, inertial motion sensing using cheap and small inertial sensors has been studied recently. In this research, the performance of inertial motion sensing especially to calculate inverse dynamics is studied. Kinematic data from inertial motion sensors is used to calculate ground reaction force (GRF), which is compared to the force plate readings (ground truth) and additionally to the estimation result from optical method. The GRF estimation result showed high correlation and low normalized RMSE(R=0.93, normalized RMSE<0.02 of body weight), which performed even better than conventional optical method. This result guarantees enough accuracy of inertial motion sensing to be used in inverse dynamics analysis.

The Influence of Wedged Insoles on Lower Extremity Joints during Gait (경사진 안창이 보행시 하지관절에 미치는 영향)

  • Kwon, Min-Jeong;Choi, Hwa-Soon;Chung, Min-K.;Na, Seok-Hee
    • Journal of the Ergonomics Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.19-27
    • /
    • 2007
  • Despite the widespread use of laterally wedged insoles for patients with knee osteoarthritis and medially wedged insoles for controlling rearfoot pronation, an understanding of the effects of wedged insoles was limited and sometimes controversial. The objective of this study was to evaluate the effect of wedged insoles on the kinematics and kinetics of normal gait. Ten male subjects without history of lower limb disorders were recruited. Each subject performed four gait cycles under each of seven conditions; shod with 5$^{\circ}$, 8$^{\circ}$ and 15$^{\circ}$, 8$^{\circ}$ and 15$^{\circ}$ laterally wedged insoles. In order to determine statistical differences among seven conditions, the measured temporal spatial variables, angular displacements, joint moments, and ground reaction forces were compared with a one-way analysis of variance. Some significant changes induced by wedged insoles were apparent in joint moments and ground reaction forces. The medially wedged insole increased the laterally directed ground reaction force and varus moments at the ankle force and varus moments at the ankle and the knee.

Analysis of Frequency domain Characteristics of Ground Reaction Forces during Quiet Standing of Elderly Women (노인여성의 정적직립자세에서 지면반력 주파수 분석)

  • Lee, Kyung-Soon
    • Journal of Korean Physical Therapy Science
    • /
    • v.19 no.1
    • /
    • pp.63-69
    • /
    • 2012
  • Background : The purpose of this study was to investigate the frequency domain characteristics of ground reaction forces during quiet standing on inclined surfaces twenty healthy individuals(10 elderly women $68.78{\pm}3.29$ years and 10 young women $20.90{\pm}0.74$ years) participated. Methods : Subjects stood in quiet stance over a force platform positioned in one of three different fixed positions: flat, down and up. Healthy participants completed with eyes open for 120 s trials. Evaluation of postural control were generally based on the interpretation of center of pressure(COP) time series. The COP have been determined using an experimental setup with 3D kinematic and the ground reaction force system. All the data were expressed means and standard deviation by using SAS package program. Results : SEF 50% were not significant in AP and ML direction according to surface slope of both groups. SEF 95% were showed highest frequency in AP direction on down slope of both groups. MEF were not significant all direction according to surface slopes of elderly women. There was no difference between young and elderly women. Conclusion : Elderly women used to ankle strategy during a quiet stance according to COP perturbation of AP direction showed more expanded than ML direction. SEF 95% were showed highest frequency on down slope in elderly women who showed more used ankle strategy for postural control on down slope.

  • PDF

Analysis of Plantar Pressure Differences between Flat Insole Trekking Shoes and Nestfit Trekking Shoes (네스핏 트레킹화와 평면 인솔 트레킹화의 족저압력 분석)

  • Choi, Jae-Won;Lee, Joong-Sook
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.4
    • /
    • pp.475-482
    • /
    • 2015
  • Objective : The purpose of this study was to investigate mean plantar foot pressure, maximum plantar pressure and ground reaction force, and center migration path of pressure according to the type of trekking shoes for the development of shoes. Method : Subjects of the study averaged $22.10{\pm}2.05years$ of age. Their average height was $169.27{\pm}7.62cm$ and their average weight was $64.34{\pm}10.22kg$. The method of this study was administered measuring 50 steps, at once, 3 times at a speed of 4 km/h and using the data of 30 steps. Pedar-X system measured the mean foot pressure, maximum foot pressure, mean maximum force, and center migration path of pressure by subjects' position while walking. Statistical analysis was performed by SPSS 23.0 using a paired t-test. Results : Results of the study showed Nestfit trekking shoes lower foot pressure of both feet in mean foot pressure and maximum foot pressure. Nestfit trekking shoes showed high ground reaction force (p<.001) in the midfoot, and low mean ground reaction force in the rearfoot. The center migration path of pressure showed the Nestfit trekking shoes were more stable than flat insole trekking shoes. Conclusion : It can be concluded that wearing Nestfit trekking shoes spreads pressure efficiently and induces walking stability because Nestfit trekking shoes spread the pressure of the forefoot and rearfoot to the midfoot and the center migration path of pressure shows regularly.

Analysis of the Ground Reaction Force Parameters According to the Change of Position and Weights of Bag during Downward Stairs Between Dominant and Non-dominant in Upper & lower limbs (계단내리기 시 우세·비우세 체지의 가방착용과 무게변화에 따른 지면반력 파라미터 분석)

  • Hyun, Seung-Hyun;Lee, Ae-Ri;Ryew, Che-Cheong
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.1
    • /
    • pp.43-50
    • /
    • 2014
  • The purpose of this study was to analyze of the GRF (ground reaction force) parameters according to the change of positions and weights of bag during downward stairs between dominant and non-dominant in upper & lower limbs. To perform this study, participants were selected 9 healthy women (age: $21.40{\pm}0.94yrs$, height: $166.50{\pm}2.68cm$, body mass: $57.00{\pm}3.61kg$, BMI: $20.53{\pm}1.03kg/m^2$), divided into 2 carrying bag positions (dominant arm/R, non-dominant arm/L) and walked with 3 type of bag weights (0, 3, 5 kg) respectively. One force-plate was used to collect GRF (AMTI OR6-7) data at a sample rate of 1000 Hz. The variables analyzed were consisted of the medial-lateral GRF (Fx), anterior-posterior GRF (Fy), vertical GRF (Fz), impact loading rate and center of pressure (COPx, COPy, COP area, COPy posterior peak time) during downward stairs. 1) The Fx, Fy, Fz, COPx, and COP area of GRF were not statistically significant between dominant leg and non-dominant leg, but non-dominant leg, that is, showed the higher COPy, and showed higher impact loading rate than that dominant leg during downward stairs. 2) In bag wearing to non-dominant arm, Fx, Fz, COPx, COPy, impact loading rate and COP area showed increase tendency according to increase of bag weights. Also, against bag wearing to dominant arm, non-dominant showed different mechanism according to increase of bag weights. The Ground Reaction Force parameters showed different characteristics according to the positions and weights of bag during downward stairs between dominant and non-dominant arm.

Gait Asymmetry in Children with Down Syndrome (다운증후군 아동들의 보행 비대칭성 연구)

  • Lim, Bee-Oh;Han, Dong-Ki;Seo, Jung-Suk;Eun, Seon-Deok;Kwon, Young-Hoo
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.145-151
    • /
    • 2006
  • A large interindividual variability and some abnormally kinematic patterns at the lower extremity were the main features of the gait in children with Down syndrome. The purposes of this study were to investigate the gait asymmetry and biomechanical difference between dominant leg and non dominant leg in children with Down syndrome. Seven boys with Down Syndrome(age: $120{\pm}0.9yrs$, weight $34.4{\pm}8.4kg$, leg length: $68.7{\pm}5.0cm$) participated in this study. A 10.0 m ${\times}$ 1.3 m walkway with a firm dark surface was built and used for data collection. Three-dimensional motion analyses were performed to obtain the joint angles and range of motions. The vertical ground reaction forces(%BW) and impulses($%BW{\cdot}s$) were measured by two force plates embedded in the walkway. Asymmetry indices between the legs were computed for all variables. After decision the dominant leg and the non dominant leg with max hip abduction angle, paired samples t-test was employed for selected kinematic and ground reaction force variables to analyze the differences between the dominant leg and the non dominant leg. The max hip abduction angle during the swing phase showed most asymmetry, while the knee flexion angle at initial contact showed most symmetry in walking and running. The dominant leg showed more excessive abduction of hip in the swing phase and more flat-footed contact than the non dominant leg. Vertical peak force in running showed more larger than those of in walking, however, vertical impulse showed more small than walking due to decrease of support time. In conclusion, the foot of dominant leg contact more carefully than those of non dominant leg. And also, there are no significant difference between the dominant leg and the non dominant leg in kinematic variables and ground reaction force due to large interindividual variability.