• Title/Summary/Keyword: Ground reaction force

Search Result 365, Processing Time 0.036 seconds

Analysis of the Ground Reaction Forces by the Dancesport Rumba Backward Walk Step (댄스스포츠 라틴댄스 룸바 Backward Walk 동작시 지면반력 변인 분석)

  • Yoo, Hye-Suk;In, Hee-Kyo;Choi, In-Ae
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.1
    • /
    • pp.129-135
    • /
    • 2008
  • This research was examined the effect of Backward Walk on ground reaction force and we achieved it by using ground reaction force machine during the Backward Walk activity with Latin and Rumba dance. We find that it was significant difference of vertical(Fz) ground reaction force of right foot in touchdown and toe-off and vertical(Fz), horizontal(Fx), front-rear(Fy) ground reaction force of left foot. There was not significant differences in vertical ground reaction force between superior athlete and unskilled athlete, but there was a significant difference in left foot. Through this, we know that the sports capability of left foot which has been developed through the training is better in superior athlete group. Therefore understanding of difference in ground reaction force and repeated training can help the unskilled athlete and beginner to accomplish the accurate movement.

The Effects of Shoe Type on Ground Reaction Force

  • Yi, Kyung-Ok
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.1
    • /
    • pp.9-16
    • /
    • 2011
  • The purpose of this study is to analyze the effects of both various shoe types and bare feet on ground reaction force while walking. Ten first-year female university students were selected. A force platform(Kistler, Germany) was used to measure ground reaction force. Six types of shoe were tested: flip flops, canvas shoes, running shoes, elevated forefoot walking shoes, elevated midfoot walking shoes, and five-toed shoes. The control group was barefooted. Only vertical passive/active ground reaction force variables were analyzed. The statistical analysis was carried out using the SAS 9.1.2 package, specifically ANOVA, and Tukey for the post hoc. The five-toed shoe had the highest maximum passive force value; while the running shoe had the lowest. The first active loading rate for running shoes was the highest; meanwhile, bare feet, the five-toed shoe, and the elevated fore foot walking shoe was the lowest. Although barefoot movement or movement in five toed shoes increases impact, it also allows for full movement of the foot. This in turn allows the foot arch to work properly, fully flexing along three arches(transverse, lateral, medial), facilitating braking force and initiating forward movement as the tendons, ligaments, and muscles of the arch flex back into shape. In contrast movement in padded shoes have a tendency to pound their feet into the ground. This pounding action can result in greater foot instability, which would account for the higher loading rates for the first active peak for padded shoes.

Ground Reaction Force and Foot Pressure Analysis During Golf Iron Swing by Gender (골프 아이언 스윙 시 성별에 따른 지면반력 및 족저압력 분석)

  • Park, Jae-Young
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.2
    • /
    • pp.167-174
    • /
    • 2010
  • This study aims to quantitatively compare and analyze kinetic variables in the motion of male and female professional golfers to suggest basic scientific materials for golf iron swing. Five male and five female professional golfers participated in this experiment. Ground reaction force and foot pressure were measured during performing 10 swings for each participants using an iron club. The result of the ground reaction force indicates that the force occurs at the left foot toward right(-) direction in the mid-downswing(E3) and impact(E4) events in X-axis, while it occurs at the right foot toward anterior(-) direction in Y-axis for both male and female, showing a big difference between them. Also, in Z-axis, large force occurs at the left foot in most events. The analyzed result on foot pressure indicates that men have the highest pressure and area at the left foot, and women have the highest ones at the right foot in the mid-downswing(E3) and impact(E4) events in the max foot pressure, ground contact area and average pressure. It is considered that there is difference of central movement methods between men and women. Thus, different education and training on golf swing should be necessary by gender due to their different patterns of golf iron swing.

Coupled foot-shoe-ground interaction model to assess landing impact transfer characteristics to ground condition

  • Kim, S.H.;Cho, J.R.;Choi, J.H.;Ryu, S.H.;Jeong, W.B.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.1
    • /
    • pp.75-90
    • /
    • 2012
  • This paper investigates the effects of sports ground materials on the transfer characteristics of the landing impact force using a coupled foot-shoe-ground interaction model. The impact force resulting from the collision between the sports shoe and the ground is partially dissipated, but the remaining portion transfers to the human body via the lower extremity. However, since the landing impact force is strongly influenced by the sports ground material we consider four different sports grounds, asphalt, urethane, clay and wood. We use a fully coupled 3-D foot-shoe-ground interaction model and we construct the multi-layered composite ground models. Through the numerical simulation, the landing impact characteristics such as the ground reaction force (GRF), the acceleration transfer and the frequency response characteristics are investigated for four different sports grounds. It was found that the risk of injury, associated with the landing impact, was reduced as the ground material changes from asphalt to wood, from the fact that both the peak vertical acceleration and the central frequency monotonically decrease from asphalt to wood. As well, it was found that most of the impact acceleration and frequency was dissipated at the heel, then not much changed from the ankle to the knee.

Effect of a Prolonged-run-induced Fatigue on the Ground Reaction Force Components (오래 달리기로 인한 피로가 지면반력 성분에 미치는 영향)

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.3
    • /
    • pp.225-233
    • /
    • 2013
  • The purpose of this study was to estimate the potential injury via analyzing ground reaction force components that were resulted from a prolonged-run-induced fatigue. For the present study, passive and active components of the vertical ground reaction force were determined from time and frequency domain. Shear components of GRF also were calculated from time and frequency domain. Twenty subjects with rear foot contact aged 20 to 30, no experience in injuries of the extremities, were requested to run on the instrumented tread-mill for 160 minutes at their preference running speed. GRF signals for 10 strides were collected at 5, 35, 65, 95, 125, and 155 minute during running. In conclusions, there were no significant difference in the magnitude of passive force, impact load rate, frequency of the passive and active components in vertical GRF between running times except the magnitude of active force (p<.05). The magnitude of active force was significantly decreased after 125 minute run. The magnitude of maximum peak and maximum frequency of the mediolateral GRF at heel strike and toe-off have not been changed with increasing running time. The time up to the maximum peak of the anteroposterior at heel-strike moment tend to decrease (p<.05), but the maximum peak and frequency of that at heel and toe-off moment didn't depend significantly on running time.

Analysis of the Characteristics of Ground Reaction Force According to the Level of Knee Osteoarthritis During Gait (보행 시 농작업 종사자들의 슬관절 퇴행성 등급에 따른 지면반력 특성 분석)

  • Lee, Kyung-Ill;Lee, Chul-Gab;Hong, Wan-Ki;Kim, Min
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.4
    • /
    • pp.393-399
    • /
    • 2015
  • Objective : This study was conducted with an aim to use it as basic data for developing assistive devices, such as insoles that can suppress the progress of degenerative diseases and strategies, to improve early degenerative diseases by assessing walking characteristics of farm workers who were classified as KL-grade in the perspective of motor mechanics. Method : 38 male and female adults who complained of knee joint pain for more than six months were selected, and they were classified according to KL-grade. KL-grade was assessed by an orthopaedic specialist and an occupational environment health specialist. Filming equipment (FX-1, CASIO, Japan) and a ground reaction force system (AMTI OR6, AMTI, USA) were used to identify ground reaction force characteristics, and WOMAC was used for a pain rating scale. Results : There was a difference between the right and left side (axis-X) according to KL-grade, and when the grade was higher, the internal ground reaction force was also higher. Changes in COP were not affected by KL-grade of the knee joint, but it tended to increase as the grade increased. There were differences in the time required for limb support while walking according to the grades, and when the grade was higher, walking was more inefficient with long braking force and short propulsion forces. Also, pain rating scale, the right and left side, and COP changes while in support phase were related. Conclusion : There was a partial, statically significant difference in KL-grade and ground reaction force occurring during the support phase, and there were differences in ground reaction forces according to the grades of degenerative arthritis in the knee joint, indicating that this study is worthy as basic data for future studies.

Effect of Landing Heights on Muscle Activities and Ground Reaction Force during Drop Landing in Healthy Adults (정상 성인에서 착지 시 착지 높이가 근활성도와 지면반발력에 미치는 영향)

  • Chang, Jong-Sung;Lee, Mi-Young
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.6 no.2
    • /
    • pp.145-151
    • /
    • 2011
  • Purpose: The study was designed to investigate the effects of landing heights on muscle activities and ground reaction force during drop landing. Methods: Sixteen healthy adults were recruited along with their written informed consent. They performed a drop-landing task at the height of 20, 40, and 60cm. They completed three trials in each condition and biomechanical changes were measured. The data collected by each way of landing task and analyzed by One-way ANOVA. Ground reaction forces were measured by force flate, muscle activities measured by MP150 system. Results: There were significant differences in ground reaction forces, and significant increases in muscle activities of tibialis anterior, medial gastrocnemius and biceps femoris with landing heights. Conclusion: These findings revealed that heights of landing increases risk factors of body damage because of biomechanical mechanism and future studies should focus on prevention from damage of external conditions.

Comparison of difference in muscle activity ratio, ground reaction force and knee valgus angle during single leg squat and landing according to dynamic taping

  • Ha, Tae-Won;Park, Sam-Ho;Lee, Myung-Mo
    • Physical Therapy Rehabilitation Science
    • /
    • v.9 no.4
    • /
    • pp.281-286
    • /
    • 2020
  • Objective: This study examined the effects of dynamic tape applied to the patellofemoral joint on the knee valgus angle, muscle activity, and ground reaction force during a single leg squat (SLS) and single leg landing (SLL). Design: Cross-sectional study. Methods: Twenty-four subjects (11 male, 13 female) who met the inclusion criteria were screened by the knee palpation and patella compression tests. First, the knee valgus angle and muscle activity during SLS were measured. Second, the knee valgus angle and ground reaction force during SLL were measured. For the intervention, a patella joint loop using dynamic tape was used. The knee valgus angle, muscle activities in SLS and SLL after the intervention, and the ground reaction force were measured in the same way. A paired t-test was used to examine the difference between before and after the intervention. Results: The knee valgus angle showed a statistically significant improvement after dynamic taping application in SLS and SLL (p<0.05). The differences in muscle activity of the VL/VMO and ground reaction forces were not statistically significant after dynamic taping application in SLS and SLL. Conclusions: This study showed that dynamic taping applied around the patellofemoral joint was effective in improving the knee valgus angle in SLS and SLL and had a reduced risk of secondary injury during sports activity.

The Effect of Genu Valgum on the Body Mass Index, Moment of Lower Limb Joints, Ground Reaction Force (신체질량지수, 하지관절의 모멘트, 지면반발력이 무릎외반슬에 미치는 영향)

  • Lee, Yong-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.3
    • /
    • pp.257-263
    • /
    • 2015
  • Objective : The purpose of this study was to investigate the effect of genu valgum on the body mass index, movement of lower limb joints, and ground reaction force. Methods : Gait patterns of 30 college students with genu valgum were analyzed and the static Q angle of the femur was measured for selecting genu valgum of the subjects. To analyze the kinetic changes during walking, the six-camera Vicon MX motion analysis system was used. The subjects were asked to walk 12 meters using the more comfortable walking method for walking. After they walked 12 meters more than 10 times, their most natural walking patterns were chosen three times and analyzed. Results : As a result of measuring a relationship between genu valgum and Q-angle, as the Q-angle increases, it showed a genu valgum also increased. Body Mass Index showed a significant difference between the groups was higher in the genu valgum group.(p<.001). The analysis result showed that genu valgum had a significant effect on the internal rotation moment in the hip joint(p<.05). Also, genu valgum had a significant effect on the internal rotation moment of the knee joint(p<.05). The comparative analysis of the Medial-Lateral ground reaction force in the genu valgum group showed a tendency to increase the medial ground reaction force(p<.05). The vertical ground reaction forces of the middle of the stance phase(Fz0) showed a significant increase in genu valgum group(p<.05), in particular the results showed a decrease in the early stance phase(p<.001). Conclusion : In conclusion, the change in body mass is considered to be made by proactive regular exercise for improvement of the genu valgum. In addition, the prevention of the deformation caused by secondary of the genu valgum in this study may be used as an indicator of the position alignment rehabilitation for structural and functional improvements. Applying a therapeutic exercise program for the next lap will require changes in posture alignment.

Difference of Ground Reaction Force and Center of Pressure Parameters according to Levels of Education during Chest Compression Resuscitation (가슴압박소생술 시 교육수준에 따른 지면반력 및 압력중심의 차이)

  • Han, KiHoon;Gil, Ho-Jong;Lee, Mi-Kyoung;Park, Joonsung;Kim, Jongbin
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.3
    • /
    • pp.220-225
    • /
    • 2021
  • Objective: The purpose of this study was to investigate the effect of levels of education on ground reaction force and center of pressure parameters during chest compression resuscitation. Method: Twenty male university students were divided into two groups; certified group (CG, n=10) and non-certified group (NCG, n=10). Two force plates were used to measure ground reaction force and center of pressure parameters during 30 times (three trials) chest compression resuscitation. Independent t-tests were used to compare ground reaction force and center of pressure parameters between two groups. An alpha level of 0.05 was used in all tests. Results: All chest-compression time parameters (total time, 1 systolic time, and diastolic time) in CG were significantly shorter than those in NCG (p<.05). Fy of the diastolic and Fz of the systolic in CG revealed significantly the larger GRF values and Fy of the systolic in CG showed significantly the smaller GRF value (p<.05). The standard deviation of Fz of the systolic and diastolic within the subject during 30 times chest-compression resuscitation revealed significantly the smaller values in CG (p<.05). Conclusion: First, CG performed chest compressions efficiently at an appropriate rate compared to NCG. Second, CG showed lower Fx and Fy values in both the mediolateral and anteroposterior axes compared to NCG, which reduced unnecessary chest-compression force consumption and minimized the movement in patients with cardiac arrest. Third, CG showed high Fz value of the systolic and low Fz value of the diastolic. Based on this, chest compression resuscitation was performed to increase the survival rate of cardiac arrest patients.