• Title/Summary/Keyword: Ground reaction force

Search Result 368, Processing Time 0.026 seconds

Intermachine Validity and Reliability of The F-mat and F-scan (발 압력 측정계(F-mat과 F-scan system)의 신뢰성과 타당성에 대한 연구)

  • Kim Kyoung;Park Young-Han;Bae Sung-Soo
    • The Journal of Korean Physical Therapy
    • /
    • v.12 no.2
    • /
    • pp.29-37
    • /
    • 2000
  • 본 연구의 목적은 힘판(Force plate)의 지면반발력(Ground reaction force)의 비교에 따라 발압력 측정계(F-메트와 F-스킨)의 상호 기계간의 신뢰성과 타당성을 연구하는 데에 목적을 두고 있으며 정상인과 리스프랑크(Lisfranc) 골절을 가지고 있는 환자를 대상으로 분석 연구하게 되었다. 힘판의 지면 반발력을 기준치로 설정하고 정상인과 환자의 각각 오른발과 왼발의 스텝에 대해 F 메트(F-mat) 와 F 스캔(F-scan) 시스템의 그래픽 비교 모식과 시간에따른 보령분석의 차이에 따라 이 논문에 대한 결과를 얻을 수 있었다. 본 연구에서는 F 스킨 시스템의 데이터 분석기인 새로운 버전 3.622와 마이크로 소프트웨어인 엑셀 97을 통해 새 시스템의 힘의 평균치와 그래픽을 통해 비교 분석하게 되었으며 다음과 같은 세가지 결론을 얻을 수 있었다. 첫 번째로 F스캔의 지면 반발력은 힘판과 비교되어질 때 통계학적으로 중요한 차이점을 얻을 수 없을 것이다. 두 번째, F 메트를 위한 지면 반발력 역시 힘판과 비교되어질 때 통계학적으로 중요한 차이점율 얻음 수 없을 것이다. 세 번째로 정상군과 실험군의 지면 반발력에 대해 중요한 차이점이 있을 것이라는 것이 밝혀졌다. 특히 정상군의 대상자는 실험군의 대상자와 비교되어질 때 각 발에 대해 증가된 지면 반발력을 나타내었다. 이상 본 연구에 대해 다음의 결론을 내릴 수가 있었고 기존의 F 스캔 시스템이 임상적으로 많이 쓰여졌지만 F 스캔의 센서에 대해 많은 이견 차이를 보였었다. 한편. F메트 시스템에서 F메트 센서의 일관성에 대해서는 어느 연구 논문도 나오지 않았고 이에 대해 F스캔(F-scan)과 힘판(Force plate)를 상호 비교하여 F메트 시스템에 대한 신뢰성과 타당성을 연구하는데 목적을 두게되었다.

  • PDF

The Effects of Gel-type Insole on Patients with Knee Osteoarthritis during Gait (겔-타입 인솔이 무릎 골관절염 환자의 보행에 미치는 영향)

  • Eun, Seon-Deok;Yu, Yeon-Joo;Shin, Hak-Soo
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.3
    • /
    • pp.181-188
    • /
    • 2007
  • The purpose of this study was to investigate the biomechanical effects of wearing different type of insole shoes on gait characteristics in patients with knee osteoarthritis. Seven patients with knee osteoarthritis (Grade 3 & 4 by Kellgren & Lawrence) were participated in the study. They wore two different type of shoes (with Gel-type Insole: GIS, with Normal insole: NIS) during gait. Three dimensional cinematography and Ground Reaction Force(GRF) data were used to get the maximal value of horizontal distance between the center of pressure in GRF and knee joint center, GRF in mediolateral direction, peak value of GRF in frontal plane, vertical compressive force and adduction moment in knee joint. The results were as follows: The maximal value of horizontal distance between the center of pressure in GRF and knee joint center was smaller in GIS than NIS. The peak value of GRF in mediolateral direction was found in 30% of gait cycle, five subjects wearing GIS showed lower value of peak GRF in mediolateral direction than wearing NIS. The peak value of GRF in frontal plane and vertical compressive force in knee joint did not show any difference between GIS and NIS. The adduction moment in GIS decreased in the late stance of gait and the mean value of the adduction moment in GIS smaller than that in NIS. GIS may help to move quickly knee joint center to the center of pressure in GRF, therefore it may prevent increasing the adduction moment in knee joint.

Changes in Impact Characteristics of the Body by Different Heel Strike Patterns during Running (달리기 시 착지 유형에 따른 인체에 미치는 충격의 변화)

  • Young-Seong Lee;Sang-Kyoon Park
    • Korean Journal of Applied Biomechanics
    • /
    • v.33 no.4
    • /
    • pp.164-174
    • /
    • 2023
  • Objective: The aim of this study was to quantitatively analyze the impact characteristics of the lower extremity on strike pattern during running. Method: 19 young subjects (age: 26.53 ± 5.24 yrs., height: 174.89 ± 4.75 cm, weight: 70.97 ± 5.97 kg) participated in this study. All subjects performed treadmill running with fore-foot strike (FFS), mid-foot strike (MFS), and rear-foot strike (RFS) to analyze the impact characteristics in the lower extremity. Impact variables were analyzed including vertical ground reaction force, lower extremity joint moments, impact acceleration, and impact shock. Accelerometers for measuring impact acceleration and impact shock were attached to the heel, distal tibia, proximal tibia, and 50% point of the femur. Results: The peak vertical force and loading rate in passive portion were significantly higher in MFS and FFS compared to FFS. The peak plantarflexion moment at the ankle joint was significantly higher in the FFS compared to the MFS and RFS, while the peak extension moment at the knee joint was significantly higher in the RFS compared to the MFS and FFS. The resultant impact acceleration was significantly higher in FFS and MFS than in RFS at the foot and distal tibia, and MFS was significantly higher than FFS at the proximal tibia. In impact shock, FFS and MFS were significantly higher than RFS at the foot, distal tibia, and proximal tibia. Conclusion: Running with 3 strike patterns (FFS, MFS, and RFS) show different impact characteristics which may lead to an increased risk of running-related injuries (RRI). However, through the results of this study, it is possible to understand the characteristics of impact on strike patterns, and to explore preventive measures for injuries. To reduce the incidence of RRI, it is crucial to first identify one's strike pattern and then seek appropriate alternatives (such as reducing impact force and strengthening relevant muscles) on that strike pattern.

Number of Trials for the Reliable Golf Swing Ground Reaction Force Data Collection and Its Characteristics (골프 드라이버스윙 시 지면반력 반복측정 횟수와 지면반력 특성)

  • Park, Young-Hoon;Youm, Chang-Hong;Seo, Kuk-Woong;Seo, Kook-Eun
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.4
    • /
    • pp.115-125
    • /
    • 2007
  • Grould Reaction force(GRF) is important in human movements and GRF measurements are one of the most frequently used tool in biomechanical studies. In the studies of the golf swing motion, people refer to GRF as weight transfer. A successful golf swing motion requires many segments activation sequences which are controled by the nerve system. Due to the inter- and intra-individual variability of the human movement and the movement strategies, reliability of the measurements are important in human movement studies. Previous golf researches were based on group studies and certain events' values were analyzed. The purposes of this study were to determine the number of trials for the reliable golf swing GRF data collection, to reveal the variability level of the meaningful components of the golf swing GRF, and to classify the types of the golf swing GRF patterns. Twenty three male professional golfers($26.4{\pm}6.6$ years, $174.3{\pm}5.2\;cm$, $71.3{\pm}6.5\;kg$) signed an informed consent form prior to participation in this study. GRFs of driver swings were collected with Kistler 9285 force platform and 9865A amplifier, and calculated by the KwonGRF program(Visol, Korea). Sampling frequency was 1080 Hz. GRF data were trimmed from 1.5 s prior to the impact to 0.5 s after the impact. The number of trials for the reliable GRF collection was determined when the change in floating mean overs the 25 % of the standard deviation of that variable. Variabilities of the variables were determined by the coefficient of variation(CV) of 10 %. The types of GRF patterns were determined by visual inspection of the peak GRF shapes. The minimum number of trials for the reliable golf swing GRF data collection was five. Ten-trial seems more conservative. The value of the peak GRF was more reliable than the value of the impact GRF. The CV of the peak GRF and impact GRF were 7.4 %, 15.2 %, respectively. Because of the +/- sigh of the peak GRF appearance time, it was impossible to calculate CV of the peak GRF appearance time. Golf swing GRF patterns were classified as sing peak type, double peak type, and plateau peak type. This classification suggests the presence of the different golf swing weight transfer strategies.

Numerical Analysis for Comparing Beam-spring and Continuum Model for Buried Pipes Considering Soil-pipe Interaction (매설관과 지반의 상호작용을 고려한 보-스프링 모델과 연속체 모델의 수치해석적 비교 연구)

  • Jeonghun Yang;Youngjin Shin;Hangseok Choi
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.9
    • /
    • pp.15-24
    • /
    • 2023
  • The behavior of buried pipes is directly influenced by the nonlinearity and complex characteristics of the surrounding soil. However, the simplified beam-spring model, which ignores the nonlinearity and complex behavior of soil, is commonly used in practice. In response, several studies have employed continuum analysis methods to account for the nonlinear and complex behavior of the soil. This paper presents various numerical continuum analysis techniques and verifies their comparison with full-scale tests. The study found that reaction force results close to the full-scale test could be obtained by applying contact surface characteristics that take into account the interaction between the ground and the buried pipe. In the case of sharing pipe and soil node method and ignoring the interaction between pipe and soil, excessive reaction force was derived, and the failure shapes were different. In addition, this study applied the dynamic explicit analysis method, ALE method, and CEL method. It was confirmed that the displacement-reaction relationship and failure shape are similar to those of the static analysis.

The Effect on the Lower Limbs Joint as the Landing Height and Floor Pattern (착지 높이와 지면 형태가 하지 관절에 미치는 영향)

  • Kim, Eun-Kyong
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.4
    • /
    • pp.437-447
    • /
    • 2011
  • In this study, the lower limbs joints were analyzed for features based on the biomechanical characteristics of landing techniques according to height and landing on the ground type (flats and downhill). In order to achieve the objectives of the study, changes were analyzed in detail contents such as the height and form of the first landing on the ground at different angles of joints, torso and legs, torso and legs of the difference in the range of angular motion of the joint, the maximum angular difference between joints, the lower limbs joints difference between the maximum moment and the difference between COM changes. The subjects in this study do not last six months did not experience joint injuries 10 males in 20 aged were tested. Experimental tools to analyze were the recording and video equipment. Samsung's SCH-650A model camera was used six units, and the 2 GRF-based AMTI were used BP400800 model. 6-unit-camera synchronized with LED (photo cell) and Line Lock system were used. the output from the camera and the ground reaction force based on the data to synchronize A/D Syc. box was used. To calculate the coordinates of three-dimensional space, $1m{\times}3m{\times}2m$ (X, Y, Z axis) to the size of the control points attached to the framework of 36 markers were used, and 29 where the body was taken by attaching a marker to the surface. Two kinds of land condition, 40cm and 60cm in height, and ground conditions in the form of two kinds of flat and downhill slopes ($10^{\circ}$) of the landing operation was performed and each subject's 3 mean two-way RM ANOVA in SPSS 18.0 was used and this time, all the significant level was set at a=.05. Consequently, analyzing the landing technique as land form and land on the ground, the changes of external environmental factors, and the lower limbs joints' function in the evaluation were significantly different from the slopes. Landing of the slop plane were more load on the joints than landing of plane. Especially, knee extensor moment compared to the two kinds of landing, slopes plane were approximately two times higher than flat plane, and it was statistical significance. Most of all not so much range of motion and angular velocity of the shock to reduce stress was important. In the further research, front landing as well as various direction of motion of kinetic, kinetic factors and EMG variables on lower limbs joints of the study in terms of injury-prevention-approach is going to be needed.

Gait Analysis of a Pediatric-Patient with Femoral Nerve Injury : A Case Study (대퇴신경 손상 환아의 보행분석 : 사례연구)

  • Hwang, S.H.;Park, S.W.;Son, J.S.;Park, J.M.;Kwon, S.J.;Choi, I.S.;Kim, Y.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.2
    • /
    • pp.165-176
    • /
    • 2011
  • The femoral nerve innervates the quadriceps muscles and its dermatome supplies anteromedial thigh and medial foot. Paralysis of the quadriceps muscles due to the injury of the femoral nerve results in disability of the knee joint extension and loss of sensory of the thigh. A child could walk independently even though he had injured his femoral nerve severely due to the penetrating wound in the medial thigh. We measured and analyzed his gait performance in order to find the mechanisms that enabled him to walk independently. The child was eleven-year-old boy and he could not extend his knee voluntarily at all during a month after the injury. His gait analysis was performed five times (GA1~GA5) for sixteen months. His temporal-spatial parameters were not significantly different after the GA2 or GA3 test, and significant asymmetry was not observed except the single support time in GA1 results. The Lower limb joint angles in affected side had large differences in GA1 compared with the normal normative patterns. There were little knee joint flexion and extension motion during the stance phase in GA1 The maximum ankle plantar/dorsi flexion angles and the maximum knee extension angles were different from the normal values in the sound side. Asymmetries of the joint angles were analyzed by using the peak values. Significant asymmetries were found in GA1with seven parameters (ankle: peak planter flexion angle in stance phase, range of motion; ROM, knee: peak flexion angles during both stance and swing phase, ROM, hip: peak extension angle, ROM) while only two parameters (maximum hip extension angle and ROM of hip joint) had significant differences in GA5. The mid-stance valleys were not observed in both right and left sides of vertical ground reaction force (GRF) in the GA1, GA2. The loading response peak was far larger than the terminal stance peak of vertical ground reaction curve in the affected side of the GA3, GA4, GA5. The measured joint moment curves of the GA1, GA2, GA3 had large deviations and all of kinetic results had differences with the normal patterns. EMG signals described an absence of the rectus femoris muscle activity in the GA1 and GA2 (affected side). The EMG signals were detected in the GA3 and GA4 but their patterns were not normal yet, then their normal patterns were detected in the GA5. Through these following gait analysis of a child who had selective injuries on the knee extensor muscles, we could verify the actual functions of the knee extensor muscles during gait, and we also could observe his recovery and asymmetry with quantitative data during his rehabilitation.

Analysis on Differences in Dynamic Stability of Lower Extremity Caused by Unbalance of Hamstring/Quadriceps Ratio During Drop-landing (드롭랜딩 시 Hamstring/Quadriceps ratio 불균형에 따른 하지의 동적 안정성 차이 분석)

  • Hong, Wan-Ki;Kim, Min
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.1
    • /
    • pp.49-56
    • /
    • 2015
  • Objectives : The purpose of this study was to present quantitative data and basic references to decrease the accident risk of soccer instructors. Methods : To obtain data, we conducted an investigation on how H/Q ratio affects the dynamic stability of the lower extremity at the time of drop landing. The study targeted 13 soccer players from C University who have not had any injuries or wounds in the lower extremity joints and in any other parts of their bodies over the last 6 months. By using CMIS (USA), the players were divided into two groups according to H/Q ratios higher and lower than 69%, respectively. The subjects in each group were instructed to perform a drop landing. Results : The H/Q ratio did not affect the maximal flexion angle of the knee joints at the time of drop landing. In addition the dominant group with a relatively high H/Q ratio was observed to have increased time to reduce shock and to efficiently absorb the ground reaction force during drop landing. Also, the dominant group with a relatively high H/Q ratio utilized the strong performances of the antagonistic muscles around the hamstrings and the controlled rotatory powers of the thighs that were applied to the tibias supported by the ground. Finally, H/Q ratio, load factors, and mean and maximum EMG were significantly negatively related, whereas GRFx showed a positive relationship. In fact, these factors all affected the impact of the load from the H/Q ratio to the knee joints. Conclusion : From these findings it can be concluded that unbalanced H/Q ratio can be considered as a predictor of knee joint injury at the time of drop landing.

Study on Dynamic Crawling of The Five-bar Planar Mechanism (5절 평면형 메커니즘의 동적 포복에 관한 연구)

  • Lee J.H.;Lim N.S.;Kim W.K.;Yi B.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1045-1049
    • /
    • 2005
  • In this paper, the dynamic crawling of a five-bar planar mechanism is investigated. One complete cycle of the crawling selected in this study consists of four different steps, i) sliding at one contact point between the mechanism and the ground, ii) changing its configuration without sliding at two contact points, iii) sliding at the other contact point, and iv) again changing its configuration without sliding at two contact points. In this type of crawling, the crawling mechanism maintains the shape of the parallel structure throughout a complete crawling cycle. The modeling algorithm for serial manipulators proposed by M. Thomas and et al.[1] is employed by introducing imaginary joints and links which represent the contact interfaces between the one end of the mechanism and the ground, while the other end of the mechanism is regarded as an end-effector of the imaginary serial manipulator which treats the reaction force and torque at the contact point as external forces. Then, a complete cycle of dynamic crawling of the mechanism is investigated through various computer simulations. The simulation result show that the stable crawling characteristics of the mechanism could be secured when the proper configurations depending on specified frictional constraints are met.

  • PDF

Numerical study on the resonance behavior of submerged floating tunnels with elastic joint

  • Park, Joohyun;Kang, Seok-Jun;Hwang, Hyun-Joong;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.207-218
    • /
    • 2022
  • In submerged floating tunnels (SFTs), a next-generation maritime transportation infrastructure, the tunnel module floats in water due to buoyancy. For the effective and economical use of SFTs, connection with the ground is inevitable, but the stability of the shore connection is weak due to stress concentration caused by the displacement difference between the subsea bored tunnel and the SFT. The use of an elastic joint has been proposed as a solution to solve the stability problem, but it changes the dynamic characteristics of the SFT, such as natural frequency and mode shape. In this study, the finite element method (FEM) was used to simulate the elastic joints in shore connections, assuming that the ground is a hard rock without displacement. In addition, a small-scale model test was performed for FEM model validation. A parametric study was conducted on the resonance behavior such as the natural frequency change and velocity, stress, and reaction force distribution change of the SFT system by varying the joint stiffness under loading conditions of various frequencies and directions. The results indicated that the natural frequency of the SFT system increased as the stiffness of the elastic joint increased, and the risk of resonance was the highest in the low-frequency environment. Moreover, stress concentration was observed in both the SFT and the shore connection when resonance occurred in the vertical mode. The results of this study are expected to be utilized in the process of quantitative research such as designing elastic joints to prevent resonance in the future.