• Title/Summary/Keyword: Ground reaction force

Search Result 368, Processing Time 0.028 seconds

Analysis of Biomechanical Differences based on Distance Changes in Connection with Approach Swings of Tour-professional Golfers

  • You, Moon-Seok;Lee, Kyung-Ill
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.1
    • /
    • pp.83-92
    • /
    • 2016
  • Objective: This study aimed to compare differences in biomechanical factors according to distance changes in relation to approaches during a round of golf to obtain basic data on golf swings. Methods: The research subjects were 8 KPGA-affiliated professional golfers who performed approach shots that put a ball into a circle of 8 feet in diameter from distances of 30, 50, and 70 m. Data were collected by using six infrared cameras and a ground reaction force device, which were applied to calculate biomechanical factors by using Kwon3D XP. The calculated data were subjected to one-way ANOVA by using SPSS 20.0, with the significance level set at p value of 0.05. Results: Elapsed time, stance width, clubhead position variation, clubhead synthesis speed, and cocking angle significantly differed according to distance change during the approach swing. Clubhead speed was positively related with stance width and clubhead displacement. Ground reaction force significantly differed according to distance change during the approach swing. Factors before and after showed differences in other states, except in the impact state. Conclusion: In the present study, we drew several conclusions regarding biomechanical factors and ground reaction forces according to distance change in the approach swing of professional golfers. According to these conclusions, we suggest that distance control with swing range is more important than power control in maintaining the accuracy and consistency of golf swing and is the most important mechanism of golf swing.

Elastic Resistance Exercise for the Elderly on the Magnitude of Frequency and Variability of Ground Reaction Force Signals during Walking (고령자 보행 시 탄성저항운동이 지면반력 신호의 주파수 크기와 variability에 미치는 영향)

  • Seo, Se-Mi;Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.4
    • /
    • pp.49-57
    • /
    • 2008
  • The purpose of this study was to determine the effects of 12-week elastic resistance exercise for the elderly on the magnitude of frequency and variability of ground reaction force signals. To this aim, total 12 elderly women aged in their 70 were participated in this study and asked to do a 12-week elastic resistance exercise program. FFT(fast Fourier Transform) was used to analyze the frequency domain analysis of the ground reaction forces's signals and an accumulative PSD (power spectrum density) normalized by support phase of walking was calculated to reconstruct the certain signals. To estimate the gait stability between the before and after exercise, values of variability were determined in a coefficient of variance. The magnitude of frequency and variability analysis for media-lateral signal revealed significantly less after exercise (p<.05). In contrast, variability of this signal's frequency that have used to evaluate the local stability during walking exhibited significantly greater after exercise(p<.05). In summary, magnitude frequency and variability of media-lateral ground reaction force's signal were significantly changed after a 12-week elastic resistance exercise.

Computation of Ground Reaction Forces During Gait using Kinematic Data (보행의 운동학적 데이터를 이용한 지면반발력 계산)

  • Song, Sung-Jae;Kim, Sei-Yoon;Kim, Young-Tae;Lee, Sang-Don
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.431-437
    • /
    • 2010
  • The purpose of this study is to compute the ground reaction forces during gait in the absence of force plates. The difficulties in using force plates for hemiparetic patients inspired us to initiate this study. Level-walking experiments were performed using a three-dimensional motion analysis system with synchronized force plates. Kinematic data were obtained from the three-dimensional trajectories of reflective markers. Gait events were also detected from the kinematic data. The human body was modeled as 13 rigid segments. The mass and the center of mass of each segment were determined from anthropometric data. Vertical ground-reaction forces obtained from the kinematic data were in good agreement with those obtained using the force plate. The computed and measured values of anterior and lateral ground reaction showed similar tendencies. The computation results can be used as the basic data for inverse dynamic analysis.

Biomechanical Analysis on Locomotion with Lower Extremity Supporter (하체서포터 착용 이동 시의 운동역학적 분석)

  • Lee, Kyung-Il;Hong, Wan-Ki;Lee, Chul-Gab
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.2
    • /
    • pp.215-222
    • /
    • 2011
  • The purpose of this study was to analyze the effects of the use of the lower extremity supporter to ground reaction force(GRF) & EMG in women. Five women participated in the experiment conducted in the study(age: $46.7{\pm}3.5$ yrs, weight: $52.3{\pm}2.2$ kg, lower extremity height: $74.1{\pm}0.9$ cm, knee height: $40.7{\pm}1.4$ cm). The Ground reaction force was measured by AMTI ORG-6 and the Muscle activity of the lower extremity was measured by an 8-channel surface EMG system(Noraxon Myoresearch, USA, 1000Hz). We statistically compared muscle activity and ground reaction force with and without the lower-extremity supporter by one-way repeated ANOVA. The results were as follows. First, the use of the lower extremity supporter affects the ground reaction force along the anterior-posterior axis(Y). Second, the vertical(Z-axis) reaction force on the upper part of the lower extremity supporter increase because of the difference between the interval of vertical movement. Third, the muscle activity of the lateral gastrocnemius and rectus femoris was higher in the upper part of the lower extremity supporter. Further research for example, on a comparative analysis of joint moments, the effects of direct stressor on joints. and the relationship between muscle activity and joint movement, is necessary for a better understanding of the effects of the lower-extremity supporter.

A study on the ground reaction forces and plantar pressure variables in different safety shoes and applying insole during walking (안전화 형태와 Insole 착용 유무에 따른 보행동작시 하지부위에 대한 지면반발력과 압력분포 부하)

  • Kim, Jung-Jin;Choi, Sang-Bock;Cha, Sang-Eun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.17 no.2
    • /
    • pp.131-143
    • /
    • 2007
  • The purpose of this study was to compare the ground reaction forces and plantar pressure variables among three different safety shoes (Type 1: ergonomically designed and high quality shoes, 2: curved and cushioned safety hoes, and 3: regular safety shoes) and to find the effect of insole during walking. Ten healthy subjects were recruited for this study. The ground reaction force was measured using a 3 dimensional motion analysis system. Plantar pressures were measured Pedar Mobile foot pressure scan system. The ground reaction force variables were not significantly different among three different shoe types and insole conditions. After insertion insole, plantar pressure distributions were improved. These results suggest that the type 1 safety shoes was superior than other safety shoes in the statistics, and applying insole could be a possible method to prevent fatigue of lower extremity and musculoskeletal disorders. Further studies are needed to find the effect of ergonomically designed safety shoes design and insole on practical value prevention of musculoskeletal disorder, fatigue and satisfaction of workers.

The Biomechanical Analysis of a One-Legged Jump in Traditional Korean Dance According to Breathing Method (호흡 방법에 따른 한국무용 외발뛰기 동작의 운동역학적 분석)

  • An, Ju-Yeun;Yi, Kyung-Ock
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.2
    • /
    • pp.199-206
    • /
    • 2015
  • Objective : The purpose of this study was to conduct a biomechanical analysis of a one-legged jump in a traditional Korean dance (Wae Bal Ddwigi) according to breathing method. Method : Participants for this study were 10 dancers with experience for at least 10 years in traditional Korean dance. Independent variables for this test were two different types of breathing methods. Dependent variables were ground reaction force and lower extremity kinematic variables. The jumping movement was divided into three separate stages, take off, flight, and landing. The subjects were asked a questionnaire regarding the degree of impact force and stability of landing posture after the experiment. The Kistler Force Plate (9281B, Switzerland) was used to measure ground reaction force. A digital camera was used to look into angles of each joint of the lower part of body. SPSS was used for statistical analysis via the dependent t-test(p<.05). Results : There were significant differences in jumping according to breathing method. The inhalation & exhalation method yielded significantly longer flight times combined with greater ground reaction force. The breath-holding method required more core flexion during landing, increasing movement at the hips and shoulders. Conclusion : Consequently, there was more flexion at the knee to compensate for this movement. As a result, landing time was significantly higher for breath-holding.

The Effects of Start and Finish Distance on the Gait Variables during Walking (보행 시작과 멈추는 거리가 보행 변인에 미치는 영향)

  • Lim, Bee-Oh;An, Seung-Hyun;Lee, Sang-Woo;Do, In-Young
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.17-27
    • /
    • 2007
  • It is essential for gait analysis to know the distance information. The purpose of this study was to investigate the effects of start and finish distance on the gait variable during walking. Six adolescent participated in this study. Start condition was given by six conditions.: walking forward from (1) one step, (2) three steps, (3) five steps, (4) ten steps, (5) one step after standing walk, and (6) three steps after standing walk, before contacting the force plate. Stop condition was given by four conditions. : stop after (1) one step, (2) two steps, (3) three steps, and (4) ten steps, passing force plate. Repeated measured one-way ANOVA was utilized for data analysis, and the significant level was set at .05. The largest change from the difference of gait velocity exists between the variables of ground reaction force. There were no significant differences in spatio-temporal and posture(angle) variables, as well as ground reaction force variables with walking over the three steps. There were significant differences in gait velocity, knee angle at heel contact, vertical impulse and ankle angle at toe off in short distance.

The Movement of Foot and the Shift of Ground Reaction Force in Batters according to the Ball Speed Increase (투구 속도 증가에 따른 타자의 발 움직임과 지면 반력의 변화)

  • Lee, Young-Suk;Eun, Seon-Deok
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.3
    • /
    • pp.191-202
    • /
    • 2004
  • The batting performance in baseball is a repetitive movement. In order to make the stabilization of posture and the efficient shift of body weight, both the range of stance and stride are important. The previous studies explained that the consistent stride which included the amount of time, stance, and direction were needed. However, the batting performance is frequently changed according to the several speed of ball. Therefore, this study was to analyze the reaction time, the range of stance, the change of stride, and the change of GRF during the batting movement in three kinds of ball speed (120km/h, 130km/h, & 140km/h). Seven elite players are participated in this study. 1. The reaction time of the stride phase was short whereas the time of the swing phase was long according to the increasing ball speed. 2. The range of the stance was wide and the mediolateral direction of the stride was decreased according to the increasing ball speed. 3. In the three kinds of ball speed, the change of body weight was transferred to the center, the rear foot, and the front foot directions. The ball speed of 130km/h showed the high frequency of the suitable batting. At this ball speed, the movement of the body weight was shifted smoothly and the value of the Ground Reaction Force was large enough.

Analysis of Variability for the Components of VGRF Signal via Increasing the Number of Attempt during Running (달리기 시도 수 증가에 따른 VGRF 신호 성분의 Variability 분석)

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.129-134
    • /
    • 2007
  • The purpose of this study was to determine the variability of components of the vertical ground reaction force signal to seek the suitable number of attempt datum to be analyzed during running at 2m/s and 4m/s. For this study, six subjects (height mean:$174.5{\pm}4.4cm$, weight $671.5{\pm}116.4N.$, age:$25.0{\pm}yrs.$) were selected and asked to run at least 3 times each run condition randomly. FFT(fast Fourier transform) was used to analyze the frequency domain analysis of the vertical ground reaction forces signal and an accumulated PSD (power spectrum density) was calculated to reconstruct the certain signal. To examine the deviation of the vertical ground reaction between signals collected from an different number of attempt, variability of frequency, magnitude of passive peak, time up to the passive peak and maximum load rate were determined in a coefficient of variance. The variability analysis revealed that when analyze the vertical reaction force components at 2m/s speed running, which belongs to slow pace relatively, it would be good to calculate these components from signal of one attempt, but 4m/s speed running needs data collected from two attempts to decrease the deviation of signal between attempts. In summary, when analyzing the frequency and passive peak of the vertical reaction force signal during the fast run, it should be considered the number of attempt.

Characteristic Analysis of HTS EDS System with Various Ground Conductors

  • Bae, Duck-Kweon;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.2
    • /
    • pp.21-24
    • /
    • 2010
  • This paper deals with numerical analysis on a high-$T_c$ superconducting (HTS) electrodynamic suspension (EDS) simulator according to the variation of the ground conductor conditions. Because the levitation force of EDS system is formed by the magnetic reaction between moving magnets and fixed ground conductors, the distribution of the magnetic flux on a ground conductor plays an important role in the determining of the levitation force level. The possible way to analyze HTS EDS system was implemented with 3D finite element method (FEM) tool. A plate type ground conductor generated stronger levitation force than ring type ground conductor. Although the outer diameter of Ring3 (335 mm) was larger than that of Ring2 (235 mm), the levitation force by Ring2 was stronger than that by Ring3. Considering the results of this paper, it is recommended that the magnetic flux distribution according to the levitation height and magnet current should be taken into account in the design of the ground conductors.