• Title/Summary/Keyword: Ground reaction force

Search Result 368, Processing Time 0.03 seconds

The Study on 3-Axes Acceleration Impact of Lower Limbs Joint during Gait (보행 시 하지 관절의 3축 충격가속도에 관한 연구)

  • Oh, Yeon-Ju;Lee, Chang-Min
    • Journal of the Ergonomics Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.33-39
    • /
    • 2009
  • Impact force to a body during walking depends on walking speed, walking steps, the condition of the floors and shoes, and weight. The ground reaction force and the foot pressure can be measured instantaneous force easily, but it's difficult to find out the amount of transferring forces to the body. On the other hand, the acceleration has an advantage for analyzing the amount of transferring forces. However, most of studies about impact forces to the ground reaction during exercise have been limited to analyze instantaneous forces. The important thing is to evaluate characters and the amount of the impact force rather than the magnitude. Therefore, this study analyze the impact force using 3 axis acceleration in three dimensions (x; anterior-posterior, y; left-right and z; longitudinal axis) using three axis acceleration. As working speed increased, impact forces increased significantly. Impact forces on x axis and z axis are higher at lower limb than that of upper limb. However, impact force at the knee is higher than that of other parts on y axis regardless of walking speed significantly. In addition, relations of the impact forces as interaction of experiment factors as well as effect of each factor are analyzed.

The kinematic and kinetic analysis of lower extremities for male sports aerobic athletes during depth jumps - a case study (남자 스포츠 에어로빅스 선수의 Depth Jump시 하지관절에 대한 운동역학적 분석-사례 연구)

  • Kim, Yoon-Ji
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.1
    • /
    • pp.259-274
    • /
    • 2005
  • The purpose of this study was to compare the kinematic and kinetic parameters of lower extremity joints between novice and experienced sports aerobic dancers during two heights of depth jumps. Four male dancers were participated in this study and they performed 40cm and 60cm height depth jump three times, respectively. Four ProReflex MCU cameras (100frame/sec) and a Kistler force plate (1000Hz) were used for data collection. The results indicated that the duration of contact phase of experienced group was shorter than that of novice group regardless of jump height. For minimum angle of hip, knee, and ankle joints, the novice group had tendency to decrease the angle but the experienced group had increased the joint angle with jump height. There was no difference of total ground reaction force between the groups but the reaction force had tendency to increase with jump height. Thus, this study implied that repetition of jump and landing may induce joint related injury and further study such as. EMG analysis of lower extremity can be needed to verify the relationship between injury and ground reaction force.

Analysis of Stability on Single-leg Standing by Wearing a Head Mounted Display

  • Woo, Byung Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.2
    • /
    • pp.149-155
    • /
    • 2017
  • Objective: The purpose of this study was to investigate the effects of three visual conditions (eyes opened, eyes closed, and wearing of a head mounted display [HMD]) on single-leg standing through kinematics and kinetic analysis. Method: Twelve college students (age: $24.5{\pm}2.6years$, height: $175.0{\pm}6.4cm$, weight: $69.2{\pm}5.1kg$) participated in this study. The study method adopted three-dimensional analysis with six cameras and ground reaction force measurement with one force plate. The analysis variables were coefficient of variation (CV) of the center of body mass, head movement, ground reaction force, and center of pressure, which were analyzed using one-way analysis of variance with repeated measures according to visual conditions. Results: In most cases, the results of this study showed that the CV was significantly higher in the order of HMD wearing, eyes closed, and eyes opened conditions. Conclusion: Our results indicated that body sway was the largest in the HMD wearing condition, and the risk of falling was high owing to the low stability.

A study on thrust and normal force by air-gap variation of a linear induction motor used for an urban railway transit (철도차량용 LIM의 공극변화에 따른 추력/수직력 특성 분석)

  • Yang, Won-Jin;Park, Chan-Bae;Lee, Hyung-Woo;Kwon, Sam-Young;Park, Hyun-June;Won, Chung-Youn
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.316-320
    • /
    • 2008
  • A light rail transit, using a linear induction motor, is generally composed with reaction plates along railroad track and the three phase primary on the vehicle. This linear induction motor is driven to keep clearance between the primary and the secondary of the ground for preventing any contact. Therefore efficiency and power factor is very low. In addition, the reaction plate installed on the ground throughout entire railway is impossible to keep uniform gap and it may cause system deterioration. In this paper, A rotary-type small-scale model of a linear induction motor for various characteristic analysis is designed. Thrust force, normal force and input current of the model by air-gap variation have been analyzed by using a Finite Element Method (FEM). The effects of air-gap variation on system performance have been considered by analysis results.

  • PDF

The Kinematic Factors of Physical Motions During Air Pistol Shooting

  • Kim, Min-Soo
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.2
    • /
    • pp.197-204
    • /
    • 2016
  • Objective: The purpose of this study was to analyze the kinematic factors of motion during air pistol shooting. Method: This study aimed to investigate changes in forces during movement and determine the factors that affect changes in force during the first, middle, and last periods of shooting an air pistol. Two ground reaction force systems (force platform), SCATT (a shooting training system), and EMG (electromyogram) to measure the action potentials in the muscles of the upper body were used in this study. Four university air pistol players (age: 19.75 years, height: 175.50 cm, body mass: $69.55{\pm}11.50kg$, career length: $6.25{\pm}6years$) who are training to progress to a higher rank were enrolled. Results: In terms of the actual shooting results, the mean score in the middle section was $42.48{\pm}1.74$ points, higher than those in the first and the last periods when using SCATT. The gunpoint moved 13.48 mm more vertically than horizontally in the target trajectory. With respect to action potentials of muscles measured using EMG, the highest action potentials during the aiming-shooting segments, in order higher to lower, were seen in the trapezius (intermediate region), trapezius (superior region), deltoid (lateral), and triceps brachii (long head). The action potentials of biceps brachii and brachioradialis turned out to be high during grasping motion, which is a preparatory stage. During the final segment, muscle fatigue appeared in the deltoid (lateral), biceps brachii (long head), brachioradialis, and trapezius (intermediate region). In terms of the ground reaction force, during the first period of shooting, there was a major change in the overall direction (left-right $F_x$, forward-backward $F_y$, vertical $F_z$) of the center of the mass. Conclusion: The development and application of a training program focusing on muscle groups with higher muscle fatigue is required for players to progress to a higher rank. Furthermore, players can improve their records in the first period if they take part in a game after warming up sufficiently before shooting in order to heighten muscle action potentials, and are expected to maintain a consistent shooting motion continuously by restoring psychological stability.

Validity of Ground Reaction Forces during Gait and Sit-to-Stand using the Nintendo Wii Balance Board in Healthy Subjects (Wii Balance Board를 이용한 Sit-to-Stand와 보행시 지면반발력의 타당도 분석)

  • Jeong, Yu-Jin;Park, Dae-Sung
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.11 no.4
    • /
    • pp.85-92
    • /
    • 2016
  • PURPOSE: A good, valid, and feasible tool for evaluating sit to stand (STS) is needed to help clinicians quantify the STS ability of stroke patients and people with balance disorders. The purpose of this study was to evaluate the concurrent validity of the Nintendo Wii Balance Board (WBB) and a force plate during STS and gait. METHODS: Seventeen healthy adults performed five trials of STS and gait on the WBB placed on the force plate. The force plate and the WBB were compared in regard to center of pressure (COP) and ground reaction force (GRF) data that were collected simultaneously. The variables used for analysis were time (s), integral summation (%), COP path length (mm), COP x range, and COP y range, all of which were measured for both tasks. Counter (%), peak (%), and rebound (%) were analyzed for STS, and $1^{st}$ peak (%), min peak (%), and 2nd peak (%) were analyzed for gait. The concurrent validity was analyzed using an intraclass correlation coefficient (ICC) and a standard error of measurement (SEM) with a 95% confidence interval. RESULTS: The concurrent validity of the WBB for STS ranged from fair to good (ICC=.701~.994, SEM=.029~3.815). The concurrent validity for gait was good (ICC=.869 ~.989, SEM=.007~2.052) aside from path length and x and y ranges of COP (ICC=-.150~.371, SEM=3.635~4.142). CONCLUSION: The GRF of the WBB has a good validity for STS and gait analysis. The WBB is remarkably portable, easy to use, and convenient for clinically assessing STS and gait.

Quantitative and Qualitative Differences according to the Shoe Type for the Grand Jete Landing in Ballet

  • Yi, Kyung-Ok;Park, Hye-Rhee
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.1
    • /
    • pp.25-29
    • /
    • 2011
  • The purpose of this study was to analyze quantitative and qualitative differences according to shoe type for the grand jete landing in ballet. The subjects for this study were 9 female ballet majors with an average of 12 years of experience. Subjects jumped, performing a front split, and landed on 1 foot, a movement called the grand jete. Analysis was performed on the students' landing. Independent variables were 3 shoe types: split sole, traditional out sole, and 5-toed forefoot shoes, with bare feet as a control group. Dependent variables were vertical passive ground reaction force and qualitative elements. Passive ground reaction force variables(maximum passive peak value, number of passive peaks, passive force-time integral, and center of pressure) were measured by the Kistler 9281B Force Platform. Qualitative elements were comfort, cushioning, pain, and fit. Statistical analysis included both 1-way ANOVA and Tukey's test for follow-up. Finalized data demonstrated that the 5-toed forefoot shoe allows the forefoot to expand and the toes to individually press down upon landing, increasing foot contact with the surface. Five-toed forefoot shoes minimize passive peaks and pain, while increasing comfort, cushioning, and fit. Most ballet movements are composed of jumping, balancing, landing, and spinning. Wearing 5-toed forefoot shoes allows for a natural range of movement in each toe, to improve both technique and balance. Pain and injuries from ballet can be minimized by wearing the correct shoe type. According to this analysis, it is possible to customized ballet shoes to increase the efficiency of techniques and movements.

Effect of Shoe Size on Foot Pressure, Ground Reaction Force, and Fatigue During Walking and Running (보행과 달리기 시 신발의 크기가 족저압과 지면반발력, 하지의 근피로에 미치는 영향)

  • Kim, Tack-Hoon
    • Physical Therapy Korea
    • /
    • v.15 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • The purpose of this study was to assess the influence of two shoe size conditions on foot pressure, ground reaction force (GRF), and lower extremity muscle fatigue. Seven healthy men participated. They randomly performed walking and running in two different conditions: proper shoe size and 10 mm greater than proper shoe size. Peak foot pressure, and vertical, anterior and mediolateral force components were recorded with the Parotec system and Kisler force platform. To assess fatigue, the participants performed treadmill running for twenty-five minutes twice, each time wearing a different shoe size. Surface electromyography was used to confirm localized muscle fatigue using power spectral analysis of four muscles (tibialis anterior, gastrocnemius medialis, rectus femoris, and biceps femoris). The results were as follows: 1) In walking conditions, there was a significantly higher peak pressure in the 10 mm greater than proper shoe size insole sensor 1, 2, 14, and 18 (p<.05). 2) In running conditions, there was a significantly higher peak pressure in the 10 mm greater than proper shoe size insole sensor 5, 14, and 15 (p<.05). 3) In walking conditions, there was a significantly higher first maximal vertical GRF in the 10 mm greater than proper shoe size (p<.05). 4) In running conditions, no GRF components were significantly different between each shoe size condition (p>.05). 5) Muscle fatigue indexes of the tibialis anterior and rectus femoris were significantly increased in the 10 mm greater than proper shoe size condition. These results indicate that wearing shoes that are too large could further exacerbate the problems of increased foot pressure, vertical GRF, and muscle fatigue.

  • PDF

Effect of Prolonged Running-induced Fatigue on Free-torque Components

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.1
    • /
    • pp.31-37
    • /
    • 2016
  • Purpose: The purpose of this study was to investigate the differences in FT (free-torque) components between non-fatigue and fatigue conditions induced by prolonged running. Methods: Fifteen healthy runners with no previous lower-extremity fractures ($22.0{\pm}2.1$ years of age) participated in this study. Ground reaction force data were collected for the right-stance phase for 10 strides of 5 and 125-min running periods at 1,000 Hz using an instrumented force platform (instrumented dual-belt treadmills, Bertec, USA) while the subjects ran on it. The running speed was set according to the preferences of the subjects, which were determined before the experiment. FT variables were calculated from the components of the moment and force output from the force platform. A repeated-measures one-way ANOVA was used to test for significant differences between the two conditions. The alpha level for all the statistical tests was 0.05. Results: The absolute FT at the peak braking force was significantly greater after 5 mins of running than after 125 mins of running-which was regarded as a fatigued state-but there were no significant differences in the absolute peak FT or impulse between the conditions. Conclusion: The FT variables in the fatigue condition during prolonged running hardly affect the tibial stress syndrome.

Correlation between sway magnitude and joint reaction force during postural balance control (자세 균형 제어 시 동요의 강도와 관절 반발력의 상관관계)

  • 서민좌;조원학;최현기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1160-1165
    • /
    • 2004
  • The purpose of this study was to calculate three dimensional angular displacements, moments and joint reaction forces of the ankle joint during the waist pulling, and to assess the ankle joint reaction forces according to different perturbation modes and different levels of perturbation magnitude. Ankle joint model was assumed 3-D ball and socket joint which is capable of three rotational movements. We used 6 cameras, force plate and waist pulling system. Two different waist pulling systems were adopted for forward sway with three magnitudes each. From motion data and ground reaction forces, we could calculate 3-D angular displacements, moments and joint reaction forces during the recovery of postural balance control. From the experiment using falling mass perturbation, joint moments were larger than those from the experiment using air cylinder pulling system with milder perturbation. However, JRF were similar nevertheless the difference in joint moment. From this finding, we could conjecture that the human body employs different strategies to protect joints by decreasing joint reaction forces, like using the joint movement of flexion or extension or compensating joint reaction force with surrounding soft tissues. Therefore, biomechanical analysis of human ankle joint presented in this study is considered useful for understanding balance control and ankle injury mechanism.

  • PDF