• Title/Summary/Keyword: Group velocity matching

Search Result 9, Processing Time 0.027 seconds

Theoretical Investigation of the Generation of Broad Spectrum Second Harmonics in Pna21-Ba3Mg3(BO3)3F3 Crystals

  • Kim, Ilhwan;Lee, Donghwa;Lee, Kwang Jo
    • Current Optics and Photonics
    • /
    • v.5 no.4
    • /
    • pp.458-465
    • /
    • 2021
  • Borate nonlinear optical crystals have been used as frequency conversion devices in many fields due to their unique transparency and nonlinearity from ultraviolet to visible spectral range. In this study, we theoretically and numerically investigate the properties of broadband second harmonic generation (SHG) in the recently reported Pna21-Ba3Mg3(BO3)3F3 (BMBF) crystal. The technique is based on the simultaneous achievement of birefringence phase matching and group velocity matching between interacting waves. We discussed all factors required for broadband SHG in the BMBF in terms of two types of phase matching and group velocity matching conditions, the beam propagation direction and the corresponding effective nonlinearity and spatial walk-off, and the spectral responses. The results show that bandwidths calculated in the broadband SHG scheme are 220.90 nm (for Type I) and 165.85 nm (for Type II) in full-width-half-maximum (FWHM). The central wavelength in each case is 2047.76 nm for Type I and 1828.66 nm for Type II at room temperature. The results were compared with the non-broadband scheme at the telecom C-band.

Transfer Alignment Using Velocity Matching/Parameter Tuning and Its Performance and Observability Analysis (속도정합 및 매개변수 조정을 사용한 전달정렬의 성능 및 가관측성 분석)

  • Yang, Cheol-Kwan;Park, Ki-Young;Kim, Hyoung-Min;Shim, Duk-Sun
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.5
    • /
    • pp.389-394
    • /
    • 2015
  • This paper considers the transfer alignment in the inertial navigation system which has lever-arm and the time delay in the velocity measurement. We suggest a method to improve the performance of the velocity matching. First, we analyze the estimation performance of the velocity matching through the tuning of the two covariance matrices of process noise and measurement noise. Next we provide some maneuvering conditions of the vehicles to improve the estimation performance using the observability analysis. The analysis results are verified using the computer simulations, which show that cruise movements do not provide the azimuth estimation of the vehicles, while east or north accelerating movement can provide.

Effective frequency doubling of fs-pulse with simultaneous group velocity matching and quasi-phase matching in periodically poled lithium niobate (주기적으로 분극반전된 $LiNbO_3$에서 군속도 일치와 의사위상정합에 의한 펨토초 펄스의 효율적인 2차 조화파발생)

  • Lee, Yu-Nan;S. Kurimura;K. Kitamura;Hun, No-Jeong;Sik, Cha-Myeong
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.224-225
    • /
    • 2003
  • Since group velocity (GV) mismatch significantly limits the efficiency of nonlinear interactions such as second harmonic generation (SHG), several techniques have been developed to compensate GV mismatch. The simplest way to avoid the GV mismatch problem is to reduce the device length. However, it results in a poor trade-off between the SHG spectral bandwidth and the conversion efficiency. (omitted)

  • PDF

A Finite-difference Modeling of Love Channel Waves in Transversely Isotropic Medium (유한차분식을 이용한 Transverse 이방성(異方性) 매질내 Love채널파동 연구)

  • Cho, Dong-Heng;Lee, Sung-Soo
    • Economic and Environmental Geology
    • /
    • v.27 no.3
    • /
    • pp.281-287
    • /
    • 1994
  • The present paper deals with numerical modeling of Love channel waves in transversely isotropic elastic medium. First, an explicit finite-difference scheme of second order approximation is formulated with the wave equation of SH particle displacement in transversely isotropic medium. Since it is a heterogeneous formulation, it should enable efficient modeling of complex model structures without additional treatment of the internal boundary matching. With a model of isotropic coal seam embedded in high velocity host rock, seismograms are synthesized and tutn out to be essentially identical with published ones of Korn and $St{\ddot{o}}ckl$. Next, anisotropic coal seams are investigated. It is found that the horizontal velocity of the seam appears to play a major role of determining the group velocity of Love channel waves. The group velocity increases with the increase of the horizontal velocity or vice versa. However, further study will be needed to exploit fully Love channel waves for the determination of lithology, stratification, fracture in sedimentary rocks, for instance, for hydrocarbon exploration and development.

  • PDF

Lamb Wave Technique for Ultrasonic Nonlinear Characterization in Elastic Plates (판재의 초음파 비선형 특성평가를 위한 Lamb Wave 기법)

  • Lee, Tae-Hun;Kim, Chung-Seok;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.5
    • /
    • pp.458-463
    • /
    • 2010
  • Since the acoustic nonlinearity is sensitive to the minute variation of material properties, the nonlinear ultrasonic technique(NUT) has been considered as a promising method to evaluate the material degradation or fatigue. However, there are certain limitations to apply the conventional NUT using the bulk wave to thin plates. In case of plates, the use of Lamb wave can be considered, however, the propagation characteristics of Lamb wave are completely different with the bulk wave, and thus the separate study for the nonlinearity of Lamb wave is required. For this work, this paper analyzed first the conditions of mode pair suitable for the practical application as well as for the cumulative propagation of quadratic harmonic frequency and summarized the result in for conditions; (1) phase matching, (2) non-zero power flux, (3) group velocity matching, and (4) non-zero out-of-plane displacement. Experimental results in aluminum plates showed that the amplitude of the secondary Lamb wave and nonlinear parameter growed up with increasing propagation distance at the mode pair satisfying the above all conditions and that the ration of nonlinear parameters measured in Al6061-T6 and Al1100-H15 was closed to the ratio of the absolute nonlinear parameters.

Characterization of Supercontinuum and Ultraviolet Pulses by Using XFROG

  • Tsermaa, Baatarchuluun;Yang, Byung-Kwan;Kim, Myung-Whun;Kim, Jin-Seung
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.158-165
    • /
    • 2009
  • We present cross-correlation frequency-resolved optical gating (XFROG) measurements of supercontinuum pulses generated by using a photonic crystal fiber (PCF), and ultraviolet (UV) pulses generated by frequency doubling of infrared ultra-short pulses. Since supercontinuum pulses have broad spectra, XFROG measurement typically requires using an extremely thin nonlinear crystal which has a thickness of sub-ten microns. Instead of using such a thin crystal, we employed a relatively thick crystal which was mounted on a galvanometer in order to achieve a phase-matching over the whole spectral bandwidth of the supercontinuum pulses by a crystal-dithering technique. Experimental results of the retrieved phase and intensity were in fair agreement with the independently measured data.

SAW Propagation Properties of GaN/Sapphire Structure (GaN/사파이어 구조에서의 표면탄성파 전단특성)

  • Choi, Kook-Hyun;Kim, Jin-Yong;Kim, Hyeong-Joon;Chung, Su-Jin;Lee, Tae-Kun;Kim, Young-Jin
    • Korean Journal of Materials Research
    • /
    • v.12 no.7
    • /
    • pp.522-527
    • /
    • 2002
  • To investigate the SAW properties of GaN films on c-plane sapphire substrates, we carried out both the experimental measuring and theoretical calculation. The experimental characterization of SAW propagation properties was performed with a linear array of interdigital transducer (IDT) structures, while SAW velocities were calculated by matrix methods. HVPSAW mode with the propagation velocity over 10,000m/s and PSAW mode as well as GSAW could be observed in experimental determination. These results were verified by matching with the theoretical calculation.

Envelope-Function Equation and Motion of Wave Packet in a Semiconductor Superlattice Structure

  • Kim, Byoung-Whi;Jun, Young-Il;Jung, Hee-Bum
    • ETRI Journal
    • /
    • v.21 no.1
    • /
    • pp.1-27
    • /
    • 1999
  • We present a new description of envelope-function equation of the superlattice (SL). The SL wave function and corresponding effective-mass equation are formulated in terms of a linear combination of Bloch states of the constituent material with smaller band gap. In this envelope-function formalism, we review the fundamental concept on the motion of a wave packet in the SL structure subjected to steady and uniform electric fields F. The review confirms that the average of SL crystal momentums K = ($k_x,k_y,q$), where ($K_x,k_y$) are bulk inplane wave vectors and q SL wave vector, included in a wave packet satisfies the equation of motion = $_0+Ft/h$; and that the velocity and acceleration theorems provide the same type of group velocity and definition of the effective mass tensor, respectively, as in the Bulk. Finally, Schlosser and Marcus's method for the band theory of metals has been by Altarelli to include the interface-matching condition in the variational calculation for the SL structure in the multi-band envelope-function approximation. We re-examine this procedure more thoroughly and present variational equations in both general and reduced forms for SLs, which agrees in form with the proposed envelope-function formalism. As an illustration of the application of the present work and also for a brief investigation of effects of band-parameter difference on the subband energy structure, we calculate by the proposed variational method energies of non-strained $GaAs/Al_{0.32}Ga_{0.68}As$ and strained $In_{0.63}Ga_{0.37}As/In_{0.73}Ga_{0.27}As_{0.58}P_{0.42}SLs$ with well/barrier widths of $60{\AA}/500{\AA}$ and 30${\AA}/30{\AA}$, respectively.

  • PDF