• Title/Summary/Keyword: Group-Key

Search Result 2,470, Processing Time 0.033 seconds

A Design of Group Authentication by using ECDH based Group Key on VANET (VANET에서 ECDH 기반 그룹키를 이용한 그룹간 인증 설계)

  • Lee, Byung Kwan;Jung, Yong Sik;Jeong, Eun Hee
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.7
    • /
    • pp.51-57
    • /
    • 2012
  • This paper proposes a group key design based on ECDH(Elliptic Curve Diffie Hellman) which guarantees secure V2V and V2I communication. The group key based on ECDH generates the VGK(Vehicular Group key) which is a group key between vehicles, the GGK(Global Group Key) which is a group key between vehicle groups, and the VRGK(Vehicular and RSU Group key) which is a group key between vehicle and RSUs with ECDH algorithm without an AAA server being used. As the VRGK encrypted with RGK(RSU Group Key) is transferred from the current RSU to the next RSU through a secure channel, a perfect forward secret security is provided. In addition, a Sybil attack is detected by checking whether the vehicular that transferred a message is a member of the group with a group key. And the transmission time of messages and the overhead of a server can be reduced because an unnecessary network traffic doesn't happen by means of the secure communication between groups.

An Efficient Renewal Mechanism of Group Key Employing the Fiat-Shamir Method on Mobile Communications

  • Tak, Dong-Gil;Lee, Yeo-Jin;Lee, Jae-Hoon;Chung, Il-Yong
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.12
    • /
    • pp.1649-1656
    • /
    • 2006
  • Renewal of the group key on the mobile communication needs it can be not re-shared by all members of the group with the exception of excluded members but also prevented from making a fraudulent use of group key due to leakage of security information for terminal. In this paper, we propose an efficient renewal mechanism of group key in order for all members of the group to be able to get digital information and to perform the renewal of group key employing the Fiat-Shamir method. It can guarantee the security of a group key since a terminal renews a group key by using security information of an excluded terminal and the previous group key.

  • PDF

Secure and Efficient Tree-based Group Diffie-Hellman Protocol

  • Hong, Sung-Hyuck
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.2
    • /
    • pp.178-194
    • /
    • 2009
  • Current group key agreement protocols(often tree-based) involve unnecessary delays because members with low-performance computer systems can join group key computation. These delays are caused by the computations needed to balance a key tree after membership changes. An alternate approach to group key generation that reduces delays is the dynamic prioritizing mechanism of filtering low performance members in group key generation. This paper presents an efficient tree-based group key agreement protocol and the results of its performance evaluation. The proposed approach to filtering of low performance members in group key generation is scalable and it requires less computational overhead than conventional tree-based protocols.

A Novel Authenticated Group Key Distribution Scheme

  • Shi, Run-hua;Zhong, Hong;Zhang, Shun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.935-949
    • /
    • 2016
  • In this paper, we present a novel authenticated group key distribution scheme for large and dynamic multicast groups without employing traditional symmetric and asymmetric cryptographic operations. The security of our scheme is mainly based on the basic theories for solving linear equations. In our scheme, a large group is divided into many subgroups, where each subgroup is managed by a subgroup key manager (SGKM) and a group key generation center (GKGC) further manages all SGKMs. The group key is generated by the GKGC and then propagated to all group members through the SGKMs, such that only authorized group members can recover the group key but unauthorized users cannot. In addition, all authorized group members can verify the authenticity of group keys by a public one-way function. The analysis results show that our scheme is secure and efficient, and especially it is very appropriate for secure multicast communications in large and dynamic client-server networks.

Reducing Rekeying Time Using an Integrated Group Key Agreement Scheme

  • Gu, Xiaozhuo;Zhao, Youjian;Yang, Jianzu
    • Journal of Communications and Networks
    • /
    • v.14 no.4
    • /
    • pp.418-428
    • /
    • 2012
  • With the requirement for providing multiple levels of access control for group members, many group key management schemes designed for hierarchical access control have been put forward. However, most of these schemes focus on the efficiency of group key establishment and rekeying in centralized environments. This paper proposes an integrated group key agreement (IGK) scheme for contributory environments. The IGK scheme employs the integrated key graph to remove key redundancies existing in single key trees, and reduces key establishment and rekeying time while providing hierarchical access control. Performance analyses and simulations conducted with respect to computation and communication overheads indicate that our proposed IGK scheme is more efficient than the independent group key agreement scheme.

A Group Key Management Architecture in Mobile Network Environments (이동네트워크 환경에서의 그룹키 관리구조)

  • 박영호
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.2
    • /
    • pp.89-100
    • /
    • 2002
  • In this paper, we propose a group key management architecture for the secure group communications in mobile netwowrks and authenticated key agreement protocol for this system. Most of existing group key management schemes un certificates based on the public key for the purpose of user authentication and key agreement in secure fashion however, we use the ICPK(Implicitly Certified Public key) to reduce the bandwidth for a certificate exchanging and to improve a computational efficiency. In this architecture, we use two-tier approach to deal with key management where the whole group is divided into two parts; the first is a cell groups consisted of mobile hosts and another is a control group consisted of cell group managers. This approach can provide flexibility of key management such that the affection for a membership change is locally restricted to the cell group which is an autonomous area of the CGM(Cell Group Manager).

Group Key Agreement From Signcryption

  • Lv, Xixiang;Li, Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.12
    • /
    • pp.3338-3351
    • /
    • 2012
  • There is an intuitive connection between signcryption and key agreement. Such a connector may lead to a novel way to construct authenticated and efficient group key agreement protocols. In this paper, we present a primary approach for constructing an authenticated group key agreement protocol from signcryption. This approach introduces desired properties to group key agreement. What this means is that the signcryption gives assurance to a sender that the key is available only to the recipient, and assurance to the recipient that the key indeed comes from the sender. Following the generic construction, we instantiate a distributed two-round group key agreement protocol based on signcryption scheme given by Dent [8]. We also show that this concrete protocol is secure in the outsider unforgeability notion and the outsider confidentiality notion assuming hardness of the Gap Diffie-Hellman problem.

A Provable Authenticated Certificateless Group Key Agreement with Constant Rounds

  • Teng, Jikai;Wu, Chuankun
    • Journal of Communications and Networks
    • /
    • v.14 no.1
    • /
    • pp.104-110
    • /
    • 2012
  • Group key agreement protocols allow a group of users, communicating over a public network, to establish a shared secret key to achieve a cryptographic goal. Protocols based on certificateless public key cryptography (CL-PKC) are preferred since CL-PKC does not need certificates to guarantee the authenticity of public keys and does not suffer from key escrow of identity-based cryptography. Most previous certificateless group key agreement protocols deploy signature schemes to achieve authentication and do not have constant rounds. No security model has been presented for group key agreement protocols based on CL-PKC. This paper presents a security model for a certificateless group key agreement protocol and proposes a constant-round group key agreement protocol based on CL-PKC. The proposed protocol does not involve any signature scheme, which increases the efficiency of the protocol. It is formally proven that the proposed protocol provides strong AKE-security and tolerates up to $n$-2 malicious insiders for weak MA-security. The protocol also resists key control attack under a weak corruption model.

Effective group key management protocol for secure multicast communication (안전한 멀티캐스트 통신을 위한 효율적인 그룹키 관리 프로토콜)

  • 이현종;김진철;오영환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.7C
    • /
    • pp.733-742
    • /
    • 2003
  • Unlikely unicast transmission, there are many elements that threaten security. Thus, key management of creating and distributing group keys to authorized group members is a critical aspect of secure multicast operations. To offer security in multicast environment, the recent researches are related to most group key distribution. In this thesis, we propose a group key management protocol for efficient, scalable, and multicast operation. This proposed protocol architecture can distribute traffic centralized to the key server. since the group key rekeyed by sub-group manager. The detailed simulation compared with other group key management protocol show that the proposed group key management protocol is better for join, leave, and data latency.

HRKT: A Hierarchical Route Key Tree based Group Key Management for Wireless Sensor Networks

  • Jiang, Rong;Luo, Jun;Wang, Xiaoping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.8
    • /
    • pp.2042-2060
    • /
    • 2013
  • In wireless sensor networks (WSNs), energy efficiency is one of the most essential design considerations, since sensor nodes are resource constrained. Group communication can reduce WSNs communication overhead by sending a message to multiple nodes in one packet. In this paper, in order to simultaneously resolve the transmission security and scalability in WSNs group communications, we propose a hierarchical cluster-based secure and scalable group key management scheme, called HRKT, based on logic key tree and route key tree structure. The HRKT scheme divides the group key into cluster head key and cluster key. The cluster head generates a route key tree according to the route topology of the cluster. This hierarchical key structure facilitates local secure communications taking advantage of the fact that the nodes at a contiguous place usually communicate with each other more frequently. In HRKT scheme, the key updates are confined in a cluster, so the cost of the key updates is reduced efficiently, especially in the case of massive membership changes. The security analysis shows that the HRKT scheme meets the requirements of group communication. In addition, performance simulation results also demonstrate its efficiency in terms of low storage and flexibility when membership changes massively.