• Title/Summary/Keyword: Growth behavior

Search Result 2,643, Processing Time 0.032 seconds

A Study on Initial Transient Behavior in Creep-Fatigue Crack Growth (크리프-피로 균열성장에서의 초기 천이거동에 대한 연구)

  • 백운봉;남승훈;윤기봉
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1722-1729
    • /
    • 1994
  • At early stage of creep-fatigue crack growth tests, initial transient behavior which implies high crack growth rate has been generally observed by some researchers. Since the influence of the initial transient crack growth behavior on the remaining life of components is significant, cause of it should be further studied. In this study, characteristics of the initial transient behavior of 1Cr-1Mo-0.25V steel is studied experimentally by performing creep-fatigue crack growth tests at $538^{\circ}C$ in air under trapezoidal waveshapes. It is verified that the cause of the initial transient behavior is not high ${(C_t)}_{avg}$ values due to the small scale creep condition at the early stage of test, but oxidation-dominated crack growth mechanism during the transient period which is different from the creep-dominated crack growth mechanism in steady crack growth period.

Prediction of Crack Growth Retardation Behavior by Single Overload (단일 과대 하중에 의한 균열 성장 지연 거동 예측)

  • 송삼흥;최진호;김기석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.928-932
    • /
    • 1996
  • Single overload fatigue tests with overload sizes ranging from 50% and 100% have been performed to investing ate the fatigue crack growth retardation behavior. A modified and experimental method of Willenborg's model for prediction of crack growth retardation behavior has been developed, based on evaluations of equivalent plastic zone size (EPZS) changing its size along the overload plastic zone boundary. The minimum crack growth rates of each overload size are linearly decreased with overload size increasing, but fatigue lives extended by single overload are increasing much more unlike the crack growth rates. Comparisons of crack growth behavior predicted by EPZS model and Willenborg model have shown that the EPZS model accounts for overload effects better than Willenborg model. These effects include delayed retardation, large retardation region, minimum crack growth rate, and the increase rate of crack growth rate in the region crack growth rate recovered.

  • PDF

Retardation Behavior of Fatigue Crack Growth and Fatigue Life Prediction of Thin Sheet Al 2024-T3 Alloy (박판 Al 2024-T3 합금재료의 피로균열성장지연거동과 피로수명예측)

  • Kim, S.G.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.31-37
    • /
    • 2011
  • Sheet aluminum alloys have been used in manufacturing of machine structures. In fatigue crack propagation behavior of thin sheet aluminum alloys, it is important that fatigue crack growth rate is affected by crack closure phenomenon. In this work, we analyzed the characteristics of fatigue crack propagation behavior in experiment of constant stress condition for thin sheet Al 2024-T3 alloys, and identified the retardation behavior of crack growth by comparing experimental results of thin and thick plate specimen. We attempt to operate the fatigue life estimating process using the fatigue related material constants from referred fatigue crack propagation analysis. And we analyzed the experimental and prediction results of fatigue life of thin sheet aluminum alloy in order to identify the relation between retardation behavior of fatigue crack growth and crack closure phenomenon.

Densification Behavior of $BaTiO_3$ Ceramics with Grain Growth ($BaTiO_3$ 요업체에서 입성장에 따른 치밀화 거동)

  • 이태헌;김정주;김남경;조상희
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.1
    • /
    • pp.51-56
    • /
    • 1995
  • Variation of sintered density of BaTiO3 powder calcined at 120$0^{\circ}C$ and 135$0^{\circ}C$ was investigated with respect to the grain growth behavior. It was found that BaTiO3 powder, which was calcined at 120$0^{\circ}C$, showed abnormal grain growth behavior during sintering process. At initial stage of sintering process, the densification rate of specimen was accelerated with rapid grain growth caused by the abnormal grain growth. But with the increase of sintering time, abnormally grown grain met each other and the density of specimen decreased drastically due to coalescence of pores located in triple junction. On the contrary, BaTiO3 powder calcined at 135$0^{\circ}C$ showed normal grain growth behavior and gradually densified with the increase of sintering time.

  • PDF

Impact of Entrepreneurial Behavior and Environment on Economic Growth based on Country Data - Focusing on Moderating Effect of Trade and Innovation - (기업가적 행동과 환경이 국가 경제성장에 미치는 영향 - 무역과 혁신의 조절효과를 중심으로 -)

  • Lee, Yea-Rim;Kim, Hag-Min
    • Korea Trade Review
    • /
    • v.41 no.4
    • /
    • pp.41-59
    • /
    • 2016
  • Given the increasing importance of entrepreneurship in a nation's economic growth, this study empirically examined the effect of entrepreneurial behavior and environment on economic growth based on country level data. While previous studies have centered on entrepreneurship as a dominant variable that impacts economic growth, this study has extends the discussion by empirically testing the effects of two entrepreneurial variables, which are entrepreneurial behavior and entrepreneurial environment, on economic growth. Furthermore, the study attempted to examine the moderating effects of trade and innovation on the relation between the independent variables and economic growth. According to the panel analysis using data from GEM and World Bank, both entrepreneurial behavior and environment affected national economic growth, completely or partly. Results showed that opportunity-driven entrepreneurial behavior has a significant effect on economic growth, suggesting that qualitative aspect of entrepreneurial activities are critical to economic growth. The results also indicated that both trade and innovation have significant moderating effects on the relationship between governmental support program and economic growth.

  • PDF

The Fatigue Life and Crack Penetration Behavior of High-Strength Steel (고장력강의 피로수명과 균열관톤 거동에 관한 연구)

  • 남기우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1990-2001
    • /
    • 1991
  • The fatigue life and crack penetration behavior of high strength steel have been studied in detail both experimentally and analytically. The fatigue crack shape of a smooth specimen is almost semicircular, while a specimen with stress concentration becomes semielliptical according to stress concentration shape. The aspect ratio of smooth specimens calculated using the Newman-Raju's formular is smaller than the value obtained from the experiment. On the other hand, the aspect ratio of the stress concentration specimen shows a good agreement with experimental results. It is found that the crack growth behavior on the back surface after the penetration is unique and can be divided into three stages ; rapid growth region, constant growth region and acceleration growth region. By using the K value suggested in this study, the particular crack growth behavior and crack shape can be estimated quantitatively.

Crack Closure and Growth Behavior of Short Fatigue Cracks under Random Loading (Part II : Growth Behavior and Growth Life Prediction) (짧은 피로균열의 랜덤하중하의 균열닫힘 및 진전거동(Part II : 진전거동 및 진전수명예측))

  • Lee, Shin-Young;Song, Ji-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.141-146
    • /
    • 2000
  • Crack closure and growth behavior of physically short fatigue cracks under random loading are investigated by performing narrow- and wide-band random loading tests for various stress ratios. The importance of the crack closure phenomenon is examined by predicting the growth lives of short cracks using obtained crack opening behavior. Artificially prepared two-dimensional, short through-thickness cracks are used. The crack opening load of short cracks is much lower under random loading than under constant-amplitude loading corresponding to the largest load cycle in a random load history. This result indicates that the largest load cycle in a random load history has an effect to enhance crack opening of short cracks. Most of the life prediction ratios are within the factor of 2 scatter band except several data at very short crack sizes, indicating that crack growth predictions based on the measured crack opening data are excellent. From the results obtained in this study, it can be concluded that crack closure is the primary factor governing fatigue crack growth of short cracks under random loading as well as under constant-amplitude loading.

  • PDF

Grain Shape and Grain Growth Behavior in the (K0.5Na0.5)NbO3-CaZrO3 System ((K0.5Na0.5)NbO3-CaZrO3 계에서 입자모양과 입자성장 거동)

  • Lee, Chul-Lee;Moon, Kyoung-Seok
    • Journal of Powder Materials
    • /
    • v.29 no.2
    • /
    • pp.110-117
    • /
    • 2022
  • The grain growth behavior in the (1-x)K0.5Na0.5NbO3-xCaZrO3 (KNNCZ-x) system is studied as a function of the amount of CZ and grain shape. The (1-x)K0.5Na0.5NbO3-xCaZrO3 (KNNCZ-x) powders are synthesized using a conventional solid-state reaction method. A single orthorhombic phase is observed at x = 0 - 0.03. However, rhombohedral and orthorhombic phases are observed at x = 0.05. The grain growth behavior changes from abnormal grain growth to the suppression of grain growth as the amount of CaZrO3 (CZ) increases. With increasing CZ content, grains become more faceted, and the step-free energy increases. Therefore, the critical growth driving force increases. The grain size distribution broadens with increasing sintering time in KNNCZ-0.05. As a result, some large grains with a driving force larger than the critical driving force for growth exhibit abnormal grain growth behavior during sintering. Therefore, CZ changes the grain growth behavior and microstructure of KNN. Grain growth at the faceted interface of the KNNCZ system occurs via two-dimensional nucleation and growth.

Fatigue Crack Growth Behavior for Welded Joint of X80 Pipeline Steel

  • Kim, Young-Pyo;Kim, Cheol-Man;Kim, Woo-Sik;Shin, Kwang-Seon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.1
    • /
    • pp.43-48
    • /
    • 2009
  • The fatigue crack growth behavior of high strength X80 pipeline steel was investigated with compact tension specimens that crack growth directions were aligned either parallel or normal to the rolling direction of the pipeline. Also, the fatigue crack growth rates for welded joint of X80 pipeline steel were investigated with compact tension specimens that crack growth directions were aligned either parallel or normal to the welding line. The experimental results indicated the fatigue crack growth behavior was markedly different in three zones, weld metal, heat affected zone and base metal of welded joints. There was a trend toward increment in the fatigue life of weld metal and heat affected zone as compared with the X80 pipeline steel.

Growth Behavior and Mechanisms in Cemented Carbides

  • Yoon, Byung-Kwon;Kang, Suk-Joong L.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.891-892
    • /
    • 2006
  • To test the correlation between grain shape and growth behavior we prepared WC-TiC-Co samples with rounded (Ti, W)C grains and faceted WC grains. The growth of rounded (Ti, W)C grains was normal. In contrast, the growth of faceted WC grains was abnormal or suppressed depending on the initial size of WC particles. These observations were explained using growth theories of crystals in a liquid and were also confirmed by a simulation using their growth equations. The present results thus demonstrate that the growth behavior of carbide grains in a liquid is governed only by their shape, irrespective of the presence of another phase.

  • PDF