• Title/Summary/Keyword: Guidance

Search Result 4,854, Processing Time 0.03 seconds

A TUTORIAL ON LINEAR QUADRATIC OPTIMAL GUIDANCE FOR MISSILE APPLICATIONS

  • TAHK, MIN-JEA
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.3
    • /
    • pp.217-234
    • /
    • 2015
  • In this tutorial the theoretical background of LQ optimal guidance is reviewed, starting from calculus of variations. LQ optimal control is then introduced and applied to missile guidance to obtain the basic form of LQ optimal guidance laws. Extension of LQ optimal guidance methodology for handling weighted cost function, dynamic lag associated with the missile dynamics and the autopilot, constrained impact angle, and constrained impact time is also described with a brief discussion on the asymptotic properties of the optimal guidance laws. Furthermore, an introduction to polynomial guidance and generalized impactangle-control guidance, which are closed related with LQ optimal guidance, is provided to demonstrate the current status of missile guidance techniques.

POLYNOMIAL FUNCTION BASED GUIDANCE FOR IMPACT ANGLE AND TIME CONTROL

  • KIM, TAE-HUN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.3
    • /
    • pp.305-325
    • /
    • 2015
  • In this paper, missile homing guidance laws to control the impact angle and time are proposed based on the polynomial function. To derive the guidance commands, we first assume that the acceleration command profile can be represented as a polynomial function with unknown coefficients. After that, the unknown coefficients are determined to achieve the given terminal constrains. Using the determined coefficients, we can finally obtain the state feedback guidance command. The suggested approach to design the guidance laws is simple and provides the more generalized optimal solutions of the impact angle and time control guidance.

Multiple UAVs Nonlinear Guidance Laws for Stationary Target Observation with Waypoint Incidence Angle Constraint

  • Kim, Mingu;Kim, Youdan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.67-74
    • /
    • 2013
  • Nonlinear guidance law combined with a pseudo pursuit guidance is proposed, to perform stationary target observation mission. Multiple UAVs are considered, with waypoint constraint. The whole guidance is divided into two steps: firstly, waypoint approach, with specified incidence angle; and secondly, loitering around the stationary target. Geometric approach is used to consider the constraint on the waypoint, and a specified phase angle between the loitering UAV and the approaching UAV. In the waypoint approach step, UAVs fly to the waypoint using the pseudo pursuit guidance law. After passing the waypoint, UAVs turn around the target, using a distance error dynamics-based guidance law. Numerical simulations are performed, to verify the performance of the proposed guidance law.

Time-varying biased proportional navigation for terminal guidance with impact attitude angle constraint (충돌 자세각 제한조건을 갖는 종단 유도를 위한 시변 편향 비례항법)

  • 김병수;이보형;이장규;김삼수;조현진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.355-358
    • /
    • 1996
  • The primary objective of guidance system is to generate suitable commands so that the pursuer comes closer to its target. It is necessary, however, in the guidance of a certain pursuer that the attitude angle at impact should be within a prescribed range in addition to specification on the miss distance. These guidance requirements can not be satisfied by the general guidance laws developed for miss distance minimization. Compared with the demand in many applications, the guidance laws dealing with impact attitude angle constraint are not easily found. In this paper, biased PNG laws are proposed to obtain the guidance purposes. By Lyapunov method, it is shown that the pursuer can intercept the target with a prescribed attitude angle under the assumption that the pursuer is sufficiently fast and the target maneuver is negligible. The simulation results are presented to demonstrate the performance of the suggested guidance laws.

  • PDF

Automatic Landing Guidance Law Design for Unmanned Aerial Vehicles based on Pursuit Guidance Law (추적유도기법 기반 무인항공기 자동착륙 유도법칙 설계)

  • Yoon, Seung-Ho;Bae, Se-Lin;Han, Young-Soo;Kim, Hyoun-Jin;Kim, You-Dan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1253-1259
    • /
    • 2008
  • This paper presents a landing controller and guidance law for net-recovery of fixed-wing unmanned aerial vehicles. A linear quadratic controller was designed using the system identification result of the unmanned aerial vehicle. A pursuit guidance law is applied to guide the vehicle to a recovery net with imaginary landing points on the desired approach path. The landing performance of a pure pursuit guidance, a constant pseudo pursuit guidance, and a variable pseudo pursuit guidance is compared. Numerical simulation using an unmanned aerial vehicle model was performed to verify the performance of the proposed landing guidance law.

Auto-Landing Guidance System Design for Smart UAV

  • Min, Byoung-Mun;Shin, Hyo-Sang;Tahk, Min-Jea;Kim, Boo-Min;Kim, Byoung-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.118-128
    • /
    • 2006
  • This paper deals with auto-landing guidance system design applicable to Smart UAV(Unmanned Aerial Vehicle). The proposed guidance law generates horizontal position, velocity and altitude commands in the longitudinal channel and heading angle command in the lateral channel to track a predetermined trajectory for automatic landing. The longitudinal guidance commands are derived from an approximated dynamic equations in vertical plane. These longitudinal guidance commands are appropriately distributed to each control input as the flight mode of Smart UAV is changed. The concept of VOR(VHF Omni-directional Range) guidance system is applied to generate the required heading angle commands to eliminate the lateral deviation from the desired trajectory. The performance of the proposed guidance system for Smart UAV is evaluated using the nonlinear simulation. Simulation results show that the proposed guidance system for auto- landing provides good tracking performance along the predetermined landing trajectory.

Molecular Mechanisms Underlying Motor Axon Guidance in Drosophila

  • Jeong, Sangyun
    • Molecules and Cells
    • /
    • v.44 no.8
    • /
    • pp.549-556
    • /
    • 2021
  • Decoding the molecular mechanisms underlying axon guidance is key to precise understanding of how complex neural circuits form during neural development. Although substantial progress has been made over the last three decades in identifying numerous axon guidance molecules and their functional roles, little is known about how these guidance molecules collaborate to steer growth cones to their correct targets. Recent studies in Drosophila point to the importance of the combinatorial action of guidance molecules, and further show that selective fasciculation and defasciculation at specific choice points serve as a fundamental strategy for motor axon guidance. Here, I discuss how attractive and repulsive guidance cues cooperate to ensure the recognition of specific choice points that are inextricably linked to selective fasciculation and defasciculation, and correct pathfinding decision-making.

Design of a Missile Guidance Law via Backstepping and Disturbance Observer Techniques Considering Missile Control System Dynamics (백스텝핑 방법과 외란관측기법에 의한 미사일 제어시스템의 동역학을 고려한 미사일 유도법칙의 설계)

  • Song, Seong-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.1
    • /
    • pp.88-94
    • /
    • 2008
  • In this paper, a design method of a missile guidance command is presented considering the dynamics of missile control systems. The design of a new guidance command is based on the well-known PNG(propotional navigation guidance) laws. The missile control system dynamics cause the time-delays of the PN guidance command and degrade the performance of original guidance laws which are designed under the assumption of the ideal missile control systems. Using a backstepping method, these time-delay effects can be compensated. In order to implement the guidance command developed by the backstepping procedure, it is required to measure or calculate the successive time-derivatives of the original guidance command, PNG and other kinematic variables such as the relative distance. Instead of directly using the measurements of these variables and their successive derivatives, a simple disturbance observer technique is employed to estimate a guidance command described by them. Using Lyapunov method, the performance of a newly developed guidance command is analyzed against a target maneuvering with a bounded and time-varying acceleration.

Performance Analysis of Powered Explicit Guidance for Satellite Launch Vehicle (Powered Explicit Guidance 알고리듬의 위성발사체 유도 성능 분석)

  • Song, Eun-Jung;Roh, Woong-Rae;Cho, Sang-Bum;Park, Chang-Su
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.9
    • /
    • pp.874-883
    • /
    • 2008
  • This study considers powered explicit guidance, one of the closed-loop guidance laws for satellite launch vehicles. The guidance algorithm employed here does not include the iterative procedure of the original algorithm. Also, the single-target algorithm to treat the general time-varying thrust profiles is described. The computer simulations for the 6-DOF launch vehicle model are performed to investigate the orbit injection accuracy of the guidance algorithm in the nominal/off-nominal flight conditions.

Three-dimensional Guidance Law for Formation Flight of UAV

  • Min, Byoung-Mun;Tahk, Min-Jea
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.463-467
    • /
    • 2005
  • In this paper, the guidance law applicable to formation flight of UAV in three-dimensional space is proposed. The concept of miss distance, which is commonly used in the missile guidance laws, and Lyapunov stability theorem are effectively combined to obtain the guidance commands of the wingmen. The propose guidance law is easily integrated into the existing flight control system because the guidance commands are given in terms of velocity, flight path angle and heading angle to form the prescribed formation. In this guidance law, communication is required between the leader and the wingmen to achieve autonomous formation. The wingmen are only required the current position and velocity information of the leader vehicle. The performance of the proposed guidance law is evaluated using the complete nonlinear 6-DOF aircraft system. This system is integrated with nonlinear aerodynamic and engine characteristics, actuator servo limitations for control surfaces, various stability and control augmentation system, and autopilots. From the nonlinear simulation results, the new guidance law for formation flight shows that the vehicles involved in formation flight are perfectly formed the prescribed formation satisfying the several constraints such as final velocity, flight path angle, and heading angle.

  • PDF