• Title/Summary/Keyword: Guiding Robot

Search Result 18, Processing Time 0.03 seconds

A Study on the Indoor Navigation of Guiding Robot for the Visually Impaired Using Sensor Fusion (센서 퓨전을 이용한 시각 장애인 유도 로봇의 실내주행 연구)

  • Jang, Chul-Woong;Jung, Ki-Ho;Yeom, Moon-Jin;Shim, Hyun-Min;Hong, Yeong-Ki;Shim, Jae-Hong;Lee, Eung-Hyuk
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.923-924
    • /
    • 2006
  • In this paper, we propose the sensor fusing method for the obstacle avoidance of guiding robot for the visually impaired In our system, we acquire obstacles distances information using ultrasonic sensors, and its width is acquired by image sensor. We also compute avoidance angle using are distance and width information gained by sensor. After the robot avoid the obstacle by computed angle, the robot returns to its original path using odometry. The robot consists of the SA1110-based controller, sensory part using sonar array and image sensor, and motion part using differential drive for climbing stairs. This system use the embedded linux for OS, and also is developed by the QT/Embedded for GUI.

  • PDF

Design of an Absolute Location and Position Measuring System for a Mobile Robot

  • Kim, Dong-Hwan;Park, Young-Chil;Hakyoung Chung
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.10
    • /
    • pp.1369-1379
    • /
    • 2001
  • This paper focuses on a development of a sensor system measuring locations of a vehicle to localize a mobile robot while it tracks on the track (location sensor) . Also it focuses on a system configuration identifying the vehicle's orientation and distance from the object while it is stationary at certain station (position sensor) . As for the location sensor it consists of a set of sensors with a combined guiding and counting sensor, and an address-coded sensor to localize the vehicle while moving on the rail. For the position sensor a PSD (Position Sensitive Device) sensor with photo-switches sensor to measure the offset and orientation of the vehicle at each station is introduced. Both sensor systems are integrated with a microprocessor as a data relay to the main computer controlling the vehicle. The location sensor system is developed and its performance for a mobile robot is verified by experiments. The position measuring system is proposed and is robust to the environmental variation. Moreover, the two kinds of sensor systems guarantee a low cost application and high reliability.

  • PDF

Development of Localization Tracking System and User Interface of Guiding Robot for the Visually Impaired (시각장애인 유도 로봇의 자기 위치 추적 시스템 및 사용자 인터페이스 개발)

  • Ryu Je-Goon;Shen Dong-Fan;Kwon Oh-Sang;Kim Nack-Hwan;Lee Sang-Moo;Lee Eung-Hyuk;Hong Seung-Hong
    • The KIPS Transactions:PartD
    • /
    • v.12D no.3 s.99
    • /
    • pp.481-492
    • /
    • 2005
  • To guide the guiding robot for the visually impaired carefully, the digital map to be used to search a path must be detailed and has some information about dangerous spots. It also has to search not only safe but also short path through the position data by GPS and INS sensors. In this paper, as the difference of the ability that the visually unpaired can recognize, we have developed the localization tracking system so that it can make a movement path and verify position information, and the global navigation system for the visually impaired using the GPS and INS. This system can be used when the visually impaired move short path relatively. We had also verified that the system was able to correct the position as the assistant navigation system of the GPS on the outside.

Design optimization of intelligent service robot suspension system using dynamic model (동역학 모델을 활용한 서비스용 지능형 로봇의 현가시스템 설계 최적화)

  • Choi, Seong-Hoon;Park, Tae-Won;Lee, Soo-Ho;Jung, Sung-Pil
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.565-570
    • /
    • 2008
  • Recently, the intelligent service robot is applied for the purpose of guiding the building or providing information to the visitors of the public institution. The intelligent robot which is on development has a sensor to recognize its location at the bottom of it. Four wheels which are arranged in the form of a lozenge support the weight of the components and structures of the robot. The operating environment of this robot is restricted at the uneven place because the driving part and internal structure is designed in one united body. The impact from the ground is transferred to the internal equipments and structures of the robot. This continuous impact can cause the unusual state of the precise components and weaken the connection between each structural part. In this paper, a suspension system which can be applied to the intelligent robot is designed. The dynamic model of the robot is created, and the driving characteristics of the actual robot and the robot with suspension are compared. The road condition which the robot can operate is expanded by the application of the suspension system. Additionally, the suspension system is optimized to reduce the impact to the robot components.

  • PDF

CCD-camera guiding of a vehicle robot

  • Arifin, Muhidin;Mori, Shingo;Komatsu, Noriyuki;Hayase, Minoru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.240-244
    • /
    • 1993
  • There are so many types of sensors which have been developed in order to construct intelligence robots. This paper presents the study of the movement of a vehicle robot using a CCD-Camera. The CCD-Camera is used as a sensor to control a vehicle robot in a stable movement. This vehicle robot is called CVR. The system is the combination of the CCD-Camera, the vehicle robot and a dedicated software controller. The stability of CVR is proven by studying the movement methodology. The performance of the movement is experimented.

  • PDF

A Study on the Obstacle Avoidance using Fuzzy-Neural Networks (퍼지신경회로망을 이용한 장애물 회피에 관한 연구)

  • 노영식;권석근
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.3
    • /
    • pp.338-343
    • /
    • 1999
  • In this paper, the fuzzy neural network for the obstacle avoidance, which consists of the straight-line navigation and the barrier elusion navigation, is proposed and examined. For the straight-line navigation, the fuzzy neural network gets two inputs, angle and distance between the line and the mobile robot, and produces one output, steering velocity of the mobile robot. For the barrier elusion navigation, four ultrasonic sensors measure the distance between the barrier and the mobile robot and provide the distance information to the network. Then the network outputs the steering velocity to navigate along the obstacle boundary. Training of the proposed fuzzy neural network is executed in a given environment in real-time. The weights adjusting uses the back-propagation of the gradient of error to be minimized. Computer simulations are carried out to examine the efficiency of the real time learning and the guiding ability of the proposed fuzzy neural network. It has been shown that the mobile robot that employs the proposed fuzzy neural network navigates more safely with and less trembling locus compared with the previous reported efforts.

  • PDF

Improved Exploration Algorithm Using Reliability Index of Thinning Based Topological Nodes

  • Kwon, Tae-Bum;Song, Jae-Bok;Lee, Soo-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.250-255
    • /
    • 2005
  • For navigation of a service robot, mapping and localization are very important. To estimate the robot pose, the map of the environment is required and it can be built by exploration or SLAM. Exploration is the fundamental task of guiding a robot autonomously during mapping such that it covers the entire environment with its sensors. In this paper, an efficient exploration scheme based on the position probability of the end nodes of a topological map is proposed. In this scheme, a topological map is constructed in real time using the thinning-based approach. The robot then updates the position probability of each end node maintaining its position at the current location based on the Bayesian update rule using the range data. From this probability, the robot can determine whether or not it needs to visit the specific end node to examine the environment around this node. Various experiments show that the proposed exploration scheme can perform exploration more efficiently than other schemes in that, in most cases, exploration for the entire environment can be completed without directly visiting everywhere in the environment.

  • PDF

Design and Optimization of Intelligent Service Robot Suspension System Using Dynamic Model (동역학 모델을 활용한 서비스용 지능형 로봇의 현가 시스템 설계 및 최적화)

  • Choi, Seong-Hoon;Park, Tae-Won;Lee, Soo-Ho;Jung, Sung-Pil;Jun, Kab-Jin;Yun, Ji-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.1023-1028
    • /
    • 2010
  • Recently, an intelligent service robot is being developed for use in guiding and providing information to visitors about the building at public institutions. The intelligent robot has a sensor at the bottom to recognize its location. Four wheels, which are arranged in the form of a lozenge, support the robot. This robot cannot be operated on uneven ground because its driving parts are attached to its main body that contains the important internal components. Continuous impact with the ground can change the precise positions of the components and weaken the connection between each structural part. In this paper, the design of the suspension system for such a robot is described. The dynamic model of the robot is created, and the driving characteristics of the robot with the designed suspension system are simulated. Additionally, the suspension system is optimized to reduce the impact for the robot components.

Air-Ground Cooperating Robots: Applications and Challenges (공중-지상 로봇 협동 기술과 그 응용 및 연구 방향)

  • Yu, Seung-Eun;Kim, Dae-Eun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.2
    • /
    • pp.101-106
    • /
    • 2010
  • Researches on air-ground robot cooperating system has been made recently. The cooperation among homogeneous robots focused on the architecture of the system, quality and influence of the communication. In contrast, the cooperation among heterogeneous robots such as aerial vehicle and ground vehicle robots has not been much handled. There are a couple of main points for those air-ground cooperating robots. One is using UAV (Unmanned Aerial Vehicle) as an extra sensor of UGV (Unmanned Ground Vehicle). This kind of application is usually used in situations such as guiding UGV to an appropriate path which could be better determined from the eye in the sky as UAV. The other main application of air-ground cooperating robot system is the localization. By combining sensor information from both UAV and UGV, the robot system as a whole can localize a target object or find features in the environment with better performance than UGV or UAV alone. Although these applications are recently studied in many different ways and devices, there are still a lot of possibilities in the field of air-ground cooperating robot systems. We introduce those research fields in this paper.

Requirements Analysis and Verification of Guiding Robots for Visually Impaired Person (시각장애인을 위한 길안내 로봇의 요구사항 분석과 검증)

  • Rhew, Sung-Yul;Kim, Duck-Un
    • Journal of Information Technology Services
    • /
    • v.5 no.2
    • /
    • pp.189-198
    • /
    • 2006
  • This study assumed that the best road guidance system for the vision impaired is a robot and analyzed and verified the requirements of road guidance system. In order to do so, the characteristics and inconveniences of the vision impaired as passengers and pedestrians were examined and their reactions to warnings and dangerous situations were analyzed. Users' needs and robots' functional requirements were applied to analyze the requirements of road guidance system. To verify whether the proposed requirements would be applied to robots effectively, a service scenario was used.