• Title/Summary/Keyword: Gyro actuator

Search Result 15, Processing Time 0.025 seconds

Design of a Gyro Actuator for the Attitude Control of an Unstructured Object (공중 물체의 자세 제어를 위한 자이로 엑츄에이터 설계)

  • Chung, Young-Gu;Yi, Keon-Young
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.490-492
    • /
    • 1998
  • An intention of this paper is design of a gyro actuator for the attitude control of an unstructured object. It is well known that the attitude control of an object hanging with wire is not easy using usual actuators. Even though an actuator such as a pan can be used for control of the object, it is difficult to meet a desired control objectives. We, for this reason, propose a gyro actuator for the attitude control of an unstructured object. The proposed gyro actuator consists of two motors. The first motor is responsible to spin the wheel and the second motor is used to turn the outer gimbal. Appling the torque to the second motor, which results in the turn of the outer gimbal, torque about the vertical axis will be obtained while a wheel of the gyro is spinning constantly. This torque is used to control the attitude of the object attached. The aim of this paper is of deriving the transfer function of the actuator and presenting the guideline of the design parameters such as the weight and the dimension of the wheel, motors, and the load capacity. Simulations to the mathematical model which has a state feedback control are conducted to show the validity of the proposed gyro actuator.

  • PDF

An Attitude Control of an Unstructured Object with Gyro Actuator (자이로 구동장치를 이용한 공중 물체의 자세 제어)

  • Chung, Young-Gu;Yi, Keon-Young
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.563-565
    • /
    • 1999
  • In this paper, we control attitude of an unstructured object with gyro actuator. It is well known that the attitude control of an object hanging with wire is not easy using usual actuators. Even though an actuator such as a fan can be used for control of the object, it is difficult to meet a desired control objectives. We, because of these reasons, make a gyro actuator with two motors. The first motor is responsible for spinning the wheel at high speed and the second motor is used to turn the inner gimbal. Applying the torque to the second motor, which results in the turn of the outer gimbal, torque about the vertical axis will be obtained while the wheel of the gyro is spinning constantly. This torque is used to control the attitude of the object attached. Gyro actuator utilize control unstructured object such as I-beam carrying by tower crane, and isolate construction workers from the dangerous environments. We derive a relationship of wheel and its motor, find a proper capacity of wheel motor in order to rotate a wheel. Through experiments of attitude control, we show to obtain desired control objectives.

  • PDF

Control of a Toroidal Type Rotor with a Magnetic Bearing Structure for the Gyro Actuator (자이로 구동기를 위한 자기베어링 구조의 토로이달 형 회전자 제어)

  • Jou, Sung-Tak;Lee, Kyo-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1703-1708
    • /
    • 2015
  • This paper deals with the position and torque control of a toroidal type rotor which has a magnetic bearing structure. The proposed magnetic bearing structure supports the rotor by the repulsive forces of permanent magnets, and has a two degree of freedom for rotor position when the rotor is rotating. Permanent magnets and coils in the stator allow for a two degree of freedom control of the rotor position and torque generation by reacting with permanent magnets of the rotor. The executed gyro actuator has a number of poles such as five-phase permanent magnet motors and 10 stator coils for the rotor position control. In this study, the verification of the stability of the magnetic bearing was conducted using the equation of motion when the rotor was rotating, and the coil current commutation method for the position control and torque generation was studied. As a result, the feasibility of the proposed structure and control was verified by simulations of Finite Element Method (FEM) and experiments using the executed gyro actuator.

A Study on the mixed mode of Gyro (자이로의 혼합모드 연구)

  • 노영환;방효충;이상용;황규진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.30-30
    • /
    • 2000
  • In the three axis control of satellite by using reaction wheel and gyro, a Gyro carries out measuring of the attitude angie and the attitude angular velocity. The Gyro is operated by the electronic part and the mechanic actuator. The digital part of the electronic part is consisted of the FPGA (Field Programmable Gate Array), which is one of the methods for designing VLSI (Very Large Scale Integrated Circuit), and the mechanic actuator processes the input/output data by the dynamic model. In the research of the mixed mode of Gyro, the simulation is accomplished by SABER of the mixed mode simulator and the results for the practical implementation of the satellite ACS (Attitude Control System) interfaced with the data processing are proposed.

  • PDF

Polarity Verification of Direction Cosine Matrix of Gyro Sensor Using The Earth Rotational Rate (지구 회전 각속도를 이용한 자이로센서의 방향코사인행렬 극성검증)

  • Oh, Shi-Hwan;Kim, Jin-Hee
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.49-55
    • /
    • 2011
  • A Direction Cosine Matrix (DCM) of each satellites sensor/actuator which contains an directional information of sensor/actuator is implemented in the on-board flight software. In order to verify the polarity of direction cosine matrix, it is mostly used that an actual sensor/actuator output is compared with the expected output value which responses to the pre-defined external stimulus to the sensor/actuator. For the gyro sensors, the Earth rotational rate can be used as an external input for the polarity verification of DCM, without using an artificial stimulus. In this study, the polarity of gyro DCM is checked and verified using the several test data which have been acquired during the different system level test phases. Finally the polarity of DCM was successfully verified using the Earth rotational rate.

A Precision Position Control of Antenna Driving System in Naval Vessel (함상 안테나 구동용 안정화장치의 정밀 위치제어)

  • Cho, Taik-Dong;Seo, Song-Ho;Nam, Ki-Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.4
    • /
    • pp.190-196
    • /
    • 2001
  • The naval vessel must moves rolling, pitching, yawing by wave when it runs in ocean. Some narrow beam antenna needed position compensation by stabilizer or gimbal for best performance. This paper presents the precision position control for heavy weight(130kg) in roll and pitch direction. Generally it's called for gimbal. This gimbal uses P-I controller, and it's driven by linear actuator and servo motor. This gimbal gets ship's gyro signal and synchro, which have the absolute angle value. Some other similar equipments are driven by huge hydraulic power, but this gimbal is driven by small servo motor. This control loop gets the following procedure repeatedly; reading ship gyro and gimbal synchro, calculating compensated error and control output, driving motor and actuator The performance of gimbal system was satisfied.

  • PDF

An Implementation of Balance Beam Controller(New Construction Machinery) for an Attitude Control and Stabilization of an Unstructured Object (공중물체의 자세제어 및 안정화를 위한 밸런스 빔 제어기(신건설장비) 구현)

  • Yi Keon Young;Kim Jin-Oh
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.1
    • /
    • pp.38-44
    • /
    • 2003
  • In this study, the balance beam control subsystem, new type of construction machinery using the mechanism of CMG (control moment gyro), for the attitude control of an unstructured object such as a beam carried by a tower crane, is designed and implemented. The balance beam controller consists of a wheel spinning at high speed and an outer gimbal for controlling the attitude of the wheel. Two motors, one for the wheel and the other for the gimbal, are used. Applying force to the spin axis of the wheel, as an input of the system, leads the torque about the axis because of the gyro effects. This torque is used to control the attitude of the unstructured object in this study. For the stabilizer function, in addition, holding the load at the current position, the attitude of the wheel is freed by cutting the power applied to the gimbal motor of the balance beam controller, which result in the braking force to stop the load by gyro effect. The works presented here include the mechanical system of the balance beam controller, the remote controller, the servo controller and the control software for the system. We also present experimental results to show that the system we proposed is useful as a new construction machinery which can control the attitude of the beam hanging from a tower crane.

An Attitude Control and Stabilization of an Unstructured Object using CMG Subsystem (자이로 구동장치를 이용한 공중물체의 자세제어 및 안정화)

  • Lee, Geon-Yeong;Gwon, Man-O
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.8
    • /
    • pp.459-466
    • /
    • 2000
  • In this paper, we propose an attitude controller for an unstructured object using CMG(Control Moment of Gyro) subsystem, which has a stabilizer function. The CMG subsystem consists of one motor for spinning the wheel and the other motor for turning the outer gimbal. While the wheel of CMG subsystem is spinning at high speed, applying force to the spin axis of the wheel leads the torque about the vertical axis. We utilize the torque to control the attitude of object in this study. For the stabilizer function, in additiion, holding the load at the current position, the power applied to the gimbal motor of CMG will be cut, which result in the braking force to stop the load by gyro effect. However, due to the gear reduction connected to outer gimbal, slow load motion cannot generate the braking force. Thus, in this study, we are willing to make a holding force by applying control power to the gimbal motor from the signal of piezoelectric gyroscopic sensor that detected the angular velocity of the load. These two features are demonstrated in experiment, carrying a beam with crane. As a result, load was started to rotate by controlling gimbal positiion and was stopped by turning off the gimbal power. Moreover, slow movement of the load was also rejected by additional control with gyroscopic sensor.

  • PDF

Detection and Identification of CMG Faults based on the Gyro Sensor Data (자이로 센서 정보 기반 CMG 고장 진단 및 식별)

  • Lee, Jung-Hyung;Lee, Hun-Jo;Lee, Jun-Yong;Oh, Hwa-Suk;Song, Tae-Seong;Kang, Jeong-min;Song, Deok-ki;Seo, Joong-bo
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.2
    • /
    • pp.26-33
    • /
    • 2019
  • Control moment gyro (CMG) employed as satellite actuators, generates a large torque through the steering of its gimbals. Although each gimbal holds a high-speed rotating wheel, the wheel imbalances induces disturbance and degrades the satellite control quality. Therefore, the disturbances ought to be detected and identified as a precaution against actuator faults. Among the method used in detecting disturbances is the state observers. In this paper, we apply a continuous second order sliding mode observer to detect single disturbances/faults in CMGs. Verification of the algorithm is also done on the hardware satellite simulator where four CMGs are installed.

On the Compensation of Camera Hand Shaking Using Friction Driven Piezoelectric Actuator (마찰 구동형 압전 작동기를 이용한 카메라 손떨림 진동보상 기법 연구)

  • Cho, Myungsin;Hwang, Jaihyuk
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.4
    • /
    • pp.23-30
    • /
    • 2015
  • The focal plane image stabilization for a camera is one of the most effective method that can increases the digital camera's image quality by compensating the vibration disturbance. The optical image stabilization can be implemented by making the focal plane to trace the path of incident light. To control the position of focal plane motion compensating stage precisely, a nonlinear control algorithm has been applied by considering coulomb friction which is nonlinear behavior of the compensator system. In our study, we have analyzed the hand shaking vibration using the gyro sensor, and made a mathematical model of compensating stage containing optical sensor and piezo-actuator. Then the nonlinear control algorithm has been designed and its performance has been verified by experiment. In this study, a friction driven peizo-electric actuator with $1{\mu}m$ resolution and 10mm/s speed has been used for stage movement.