• Title/Summary/Keyword: HPLC-ICP-MS

Search Result 50, Processing Time 0.027 seconds

Study of improving precision and accuracy by using an internal standard in post column isotope dilution method for HPLC-ICP/MS (후 컬럼 동위원소 희석법을 적용한 HPLC-ICP/MS에서의 정량분석에서 내부 표준물을 이용한 정확도와 정밀도의 개선연구)

  • Joo, Mingyu;Park, Myungsun;Pak, Yong-Nam
    • Analytical Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.140-146
    • /
    • 2014
  • An internal standard was used in PCID (post column isotope dilution) to improve the accuracy and precision in quantification of various chemical species. The error occurring in the column was the largest in HPLC-ICP/MS (high performance liquid chromatography-inductively coupled plasma/mass spectrometry) when PCID and other traditional quantification methods were compared with each other. Internal standard was effective in correcting the loss of sample in the column to improve accuracy and precision. When applied to SeMet, using MeSecys or $Se^{4+}$ as an internal standard, relative errors were reduced from 31% and 13% to less than 1%, while standard deviations were reduced from 5.1% and 6.9% to 1.5% and 0.2%, respectively. Positive aspects of using an internal standard in PCID were compared with other quantitative techniques and discussed in detail.

A short study of uncertainty for post column isotope dilution method in HPLC-ICP/MS (HPLC-ICP/MS에서 후 컬럼 동위원소 희석법의 기초적인 불확도 연구)

  • Joo, Mingyu;Pak, Yong-Nam
    • Analytical Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.269-276
    • /
    • 2014
  • A short study for the uncertainty of post column isotope dilution method has been performed for the analysis of Selenomethionine in HPLC-ICP/MS. Major error sources studied were concentration and the flow rate of Se isotope solution, atomic weights of Se in spike and sample, and isotope ratio measured for the spiked sample. Uncertainties were obtained for each factor and the contribution for the total concentration uncertainty was 54.4% and 0.61%, 0.0072% and 0.018%, and 45.0%, respectively. The biggest contribution factor was concentration of the spike solution and the second was the isotopic ratio measured for the spiked sample solution. The mass flow rate of spike and atomic weights did not show much contribution. The calculated total uncertainty was $1.46ng{\cdot}g^{-1}$ for the standard SeMet ($126.30ng{\cdot}g^{-1}$). The experimental result was $127.09{\pm}1.46ng{\cdot}g^{-1}$ and the relative uncertainty was 1.20%.

Bioanalytical method validation for determination of arsenic speciation in dog plasma using HPLC-ICP/MS (Dog 혈장 중 HPLC-ICP/MS를 이용한 비소 화학종 분석법 검증)

  • Kim, Jong-Hwan;Kwon, Young Sang;Shin, Min-Chul;Kim, Su Jong;Seo, Jong-Su
    • Analytical Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.234-241
    • /
    • 2016
  • The approach presented in this article refers to the bioanalytical method validation for the detection and quantitative determination of arsenic species including arsenite (As(III)), arsenate (As(V)), dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) in dog plasma by high-performance liquid chromatography inductively coupled plasma mass spectrometry (HPLC-ICP/MS). The arsenic species were separated using an agilent As speciation column by a mobile phase of 2 mM sodium phosphate monobasic, 0.2 mM ethylenediaminetetraacetic acid disodium salt dehydrate, 10 mM sodium acetate, 3 mM sodium nitrate and 1 % ethyl alcohol at pH 11 (adjusted with 1M NaOH). The method validation experiment was obtained selectivity, linearity, accuracy, precision, matrix effect, recovery, system suitability, dilution integrity and various stabilities. All calibration curves showed good linearity (R2>0.999) within test ranges. The lower limit of quantitation (LLOQ) was 5 ng/mL for As(III), As(V) and DMA, and 20 ng/mL for MMA. The system suitability and dilution values were within 6.5 % and 7.7 %. Subsequently, the developed and validated HPLC-ICP/MS method was also successfully applied to determine the arsenic speciation in dog plasma samples, and the recoveries for the spiked samples were in the range of 91.5–102.2 %. Therefore, this method could be applied to the evaluation of arsenic exposure, health effect assessment and other bio-monitoring studies in biological samples.

Establishment of Analytical Method for Methylmercury in Fish by Using HPLC-ICP/MS (고성능액체크로마토그래피-유도결합플라즈마 질량분석기를 이용한 어류 중 메틸수은 분석법 확립)

  • Yoo, Kyung-Yoal;Bahn, Kyeong-Nyeo;Kim, Eun-Jung;Kim, Yang-Sun;Myung, Jyong-Eun;Yoon, Hae-Seong;Kim, Mee-Hye
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.3
    • /
    • pp.288-294
    • /
    • 2011
  • BACKGROUND: Methylmercury is analyzed by HPLC-ICP/MS because of the simplicity for sample preparation and interference. However, most of the pre-treatment methods for methylmercury need a further pH adjustment of the extracted solution and removal of organic matter for HPLC. The purpose of this study was to establish a rapid and accurate analytical method for determination of methylmercury in fish by using HPLC-ICP/MS. METHOD AND RESULTS: We conducted an experiment for pre-treatment and instrument conditions and analytical method verification. Pre-treatment condition was established with aqueous 1% L-cysteine HCl and heated at $60^{\circ}C$ in microwave for 20 min. Methylmercury in $50{\mu}L$ of filtered extract was separated by a C18 column and aqueous 0.1% L-cysteine HCl + 0.1% L-cysteine mobile phase at $25^{\circ}C$. The presence of cysteine in mobile phase and sample solution was essential to eliminate adsorption, peak tailing and memory effect problems. Correlation coefficient($r^2$) for the linearity was 0.9998. The limits of detection and quantitation for this method were 0.15 and $0.45{\mu}g/kg$ respectively. CONCLUSION: Result for analytical method verification, accuracy and repeatability of the analytes were in good agreement with the certified reference materials values of methylmercury at a 95% confidence level. The advantage of the established method is that the extracted solution can be directly injected into the HPLC column without additional processes and the memory effect of mercury in the ICP-MS can be eliminated.

Quantitative Speciation of Selenium in Human Blood Serum and Urine with AE- RP- and AF-HPLC-ICP/MS

  • Jeong, Ji-Sun;Lee, Jonghae;Pak, Yong-Nam
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3817-3824
    • /
    • 2013
  • Various separation modes in HPLC, such as anion exchange (AE), reversed-phase (RP), and affinity (AF) chromatography were examined for the separation of selenium species in human blood serum and urine. While RP- and AE-HPLC were mainly used for the separation of small molecular selenium species, double column AF-HPLC achieved the separation of selenoproteins in blood serum efficiently. Further, the effluent of AF-HPLC was enzymatically hydrolyzed and then analyzed with RP HPLC for selenoamino acid study. The versatility of the hybrid technique makes the in-depth study of selenium species possible. For quantification, post column isotope dilution (ID) with $^{78}Se$ spike was performed. ORC ICP/MS (octapole reaction cell inductively coupled plasma/mass spectrometry) was used with 4 mL $min^{-1}$ Hydrogen as reaction gas. In urine sample, inorganic selenium and SeCys were identified. In blood serum, selenoproteins GPx, SelP and SeAlb were detected and quantified. The concentration for GPx, SelP and SeAlb was $22.8{\pm}3.4\;ng\;g^{-1}$, $45.2{\pm}1.7\;ng\;g^{-1}$, and $16.1{\pm}2.2\;ng\;g^{-1}$, respectively when $^{80}Se/^{78}Se$ was used. The sum of these selenoproteins ($84.1{\pm}4.4\;ng\;g^{-1}$) agrees well with the total selenium concentration measured with the ID method of $87.0{\pm}3.0\;ng\;g^{-1}$. Enzymatic hydrolysis of each selenium proteins revealed that SeCys is the major amino acid for all three proteins and SeMet is contained in SeAlb only.

Arsenic Speciation and Risk Assesment of Hijiki (Hizikia fusiforme) by HPLC-ICP-MS (HPLC-ICP-MS를 이용한 톳의 비소 화학종 분석 및 위해성 평가)

  • Ryu, Keun-Young;Shim, Sung-Lye;Hwang, In-Min;Jung, Min-Seok;Jun, Sam-Nyeo;Seo, Hye-Young;Park, Jong-Seok;Kim, Hee-Yeon;Om, Ae-Sun;Park, Kyung-Su;Kim, Kyong-Su
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • This study investigated arsenic speciation and risk assesment in 30 samples of hijiki purchased from local market in 10 Korean cities. The mean arsenic concentration of the hijiki samples was 45.65 mg/kg (dryness; moisture content of 91.1${\pm}$1.6%), and the major arsenic compound was arsenate [As(V)]. The concentrations of As(V) and As(III), as inorganic arsenic compounds, were detected to be 40.36 mg/kg and 0.37 mg/kg, respectively, and made up 88.6% (40.46 mg/kg) of the arsenic in the hijiki. Among the samples, the highest inorganic arsenic concentration was identified at 9.19 mg/kg (wet), and for an adult with a body weight of 60 kg was within an acceptable level as 0.7% (6.43 mg/60 kg/week) when compared with the provisional tolerable weekly intake (PTWI) (900 mg/60 kg/week), and would be considered safe with respect to health-hazardous effects.

Quantitative analysis of selenium species in sea food using solid phase extraction and HPLC-ICP/MS (해산물 시료에서 solid-phase extraction 및 HPLC-ICP/MS를 이용한 셀레늄 화학종의 정량분석)

  • Kim, Eunju;Joo, Minkyu;Kwon, Hyosik;Pak, Yongnam
    • Analytical Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.307-314
    • /
    • 2013
  • Selenium exists in various forms of chemical species. The activity and bioavailability is strongly dependent on its chemical form and concentration. Consequently the information on each selenium species and its concentration must be exactly determined for the food we take in. In this study, selenium species in seafood were separated and quantified by RP (reversed phase) HPLC (high performance liquid chromatography) coupled with ICP-MS (inductively coupled plasma mass spectrometry) using post-column isotope dilution. $^{79}Br$, which interferes on $^{80}Se$, has mostly been removed by solid phase extraction and then mathematical correction has been applied for the more accurate correction. The experimental result for CRM (certified reference material) DOLT-4 agreed well with the certified value but each selenium species could not be compared. SeCys (selenocysteine) and SeMet (selenomethionine) were the major species detected in seafood such as belt fish, spanish mackerel, and squid that have been serving as Korean diet. The concentrations found in Korean sea food for SeCys and SeMet were in the range of 0-661.6 mg/kg and 137.3-462.7 mg/kg, respectively.

The separation of arsenic metabolites in urine by high performance liquid chromatography-inductively coupled plasma-mass spectrometry

  • Chung, Jin-Yong;Lim, Hyoun-Ju;Kim, Young-Jin;Song, Ki-Hoon;Kim, Byoung-Gwon;Hong, Young-Seoub
    • Environmental Analysis Health and Toxicology
    • /
    • v.29
    • /
    • pp.18.1-18.9
    • /
    • 2014
  • Objectives The purpose of this study was to determine a separation method for each arsenic metabolite in urine by using a high performance liquid chromatography (HPLC)-inductively coupled plasma-mass spectrometer (ICP-MS). Methods Separation of the arsenic metabolites was conducted in urine by using a polymeric anion-exchange (Hamilton PRP X-100, $4.6mm{\times}150mm$, $5{\mu}m$) column on Agilent Technologies 1260 Infinity LC system coupled to Agilent Technologies 7700 series ICP/MS equipment using argon as the plasma gas. Results All five important arsenic metabolites in urine were separated within 16 minutes in the order of arsenobetaine, arsenite, dimethylarsinate, monomethylarsonate and arsenate with detection limits ranging from 0.15 to $0.27{\mu}g/L$ ($40{\mu}L$ injection). We used G-EQUAS No. 52, the German external quality assessment scheme and standard reference material 2669, National Institute of Standard and Technology, to validate our analyses. Conclusions The method for separation of arsenic metabolites in urine was established by using HPLC-ICP-MS. This method contributes to the evaluation of arsenic exposure, health effect assessment and other bio-monitoring studies for arsenic exposure in South Korea.

Separation and identification of selenoproteins in selenium-enriched yeast (셀레늄이 강화된 이스트에서 셀레늄 단백질의 분리 및 확인)

  • Kim, Kyong-Mi;Pak, Yong-Nam
    • Analytical Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.357-363
    • /
    • 2013
  • Selenium-containing proteins were separated from selenium-enriched yeast (SEY) using Trizol$^{(R)}$ reagent followed by anion exchange (AE) chromatography. This method is simpler and less time consuming than electrophoresis. Five selenium containing proteins were identified by on-line AE HPLC-ICP/MS (high performance liquid chromatography-inductively coupled plasma/mass spectrometry). Each protein was enzymatically hydrolyzed to seleno-amino acids and separated with RP (reverse phase) HPLC for the identification of selenoproteins.