• Title/Summary/Keyword: HTS power cable

Search Result 216, Processing Time 0.024 seconds

Study on the Stability Evaluation of the High-Tc Superconducting Power Cable (고온초전도 전력케이블의 안정도 평가를 위한 교류손실에 관한 연구)

  • Bae, J.H.;Choi, S.J.;Lee, S.J.;Cho, J.W.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.7
    • /
    • pp.1236-1240
    • /
    • 2007
  • In order to evaluate if the high-Tc superconducting(HTS) power cable is operating stably, the characteristics of the HTS power cable should be found out. The properties of HTS tapes by measuring the voltage with respect to the current can be archived. But, the HTS power cable is different from the case of HTS tapes. This method is invalid because of the electromagnetic fields caused by other HTS tapes. In this paper, the stability evaluation of the HTS cable was performed by the following procedure. First, the voltage-current characteristics of HTS tape were measured and the electromagnetic field distributions of the HTS power cable with the external magnetic field were analyzed. Second, the losses of the HTS power cable were calculated using the result of the measurement and the analysis. Finally, the stable operation of the HTS power cable was evaluated on the basis of the losses of the superconducting cable.

Methodology for Estimating the HTS Cable Market Price (초전도케이블 시장진입 가격 산정 방법론 고찰)

  • Kim Jong-Yul;Lee Seung-Ryul;Yoon Jae-Young
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.10
    • /
    • pp.536-541
    • /
    • 2004
  • As power demand increases gradually, the call for underground transmission system increases. But it is very difficult and high in cost to construct new ducts and/or tunnels for power cables in metropolitan areas. HTS (High Temperature Superconducting) cable has the several useful characteristics such as increased power density, stronger magnetic fields and/or reduced losses. Therefore HTS cable can allow more power to be moved in existing ducts, which means very large economical and environmental benefits. In these days, companies world-wide have conducted researches on HTS cable. A development project for a 22.9kV class HTS cable is proceeding at a research center and university in Korea. In this paper, we investigate the expected price of HTS cable to have a merit in viewpoint of economic aspect. First, life-cycle cost of conventional cable is calculated and based on this, the expected price of HTS cable is evaluated, which HTS cable is competitive against conventional cable.

A Study on the Introduction of Superconducting Cable in Korean Power System (초전도 케이블 계통 적용을 위한 계통 구성 방안 및 적용 대상 고찰)

  • 김종율;윤재영;이승렬
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.2
    • /
    • pp.8-15
    • /
    • 2003
  • Nowadays, As power demand increases gradually, the call for underground transmission system increases. But it is very difficult and high in cost to construct new ducts and/or tunnels for power cables in metropolitan areas. HTS cable has the several useful characteristics such as increased power density, stronger magnetic fields and/or reduced losses. Therefore HTS cable can allow more power to be moved in existing ducts, which means very large economical and environmental benefits. In this paper, we investigate the status of korean power system and underground transmission system. Based on this, the feasibility study on applying HTS cable to korean power system is carried out and then we propose the new power system configuration of metropolitan area with HTS cable. Finally, we can get a conclusion that applying HTS cable to 154kV underground transmission line in metropolitan area such as seoul is very available. In addition, detail applicable cases are investigated; a)replace old conventional cable with HTS cable; b) apply HTS cable to constructing new underground transmission line; c)use HTS cable to resolve overload problem in conventional power system configuration.

Harmonics based loss characteristics analysis of HTS DC power cable (고조파에 의한 초전도 직류 전력케이블의 손실 특성 분석)

  • Kim, S.K.;Kim, S.H.;Park, M.W.;Yu, I.K.;Lee, S.J.;Cho, J.W.;Sim, K.D.;Won, Y.J.;Hwang, S.D.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.3
    • /
    • pp.19-23
    • /
    • 2011
  • An HTS DC power cable is expected to perfectly eliminate transmission loss caused by resistance. However, when the HTS DC power cable is applied to the power system, loss of the HTS DC power cable is generated due to harmonics caused by HVDC converter. We designed and analyzed the HTS DC power cable with a critical current of 1 kA to investigate the loss characteristics using a finite element method package. In this paper, the loss characteristics caused by harmonics in the HTS DC power cable were analyzed according to order and magnitude of harmonics. Based on the analysis results, the critical current of HTS DC power cable considered with the rated current could be determined to minimize the capacity of cooling system for the design the HTS DC power cable.

A Economic feasibility of HTS cable by estimating the Life-Cycle cost (Life-cycle 비용 산정을 통한 초전도케이블 경제성 검토)

  • Kim Jong Yul;Lee Seong Ryul;Yoon Jae Young
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.424-426
    • /
    • 2004
  • As power demand increases gradually, the call for underground transmission system increases. But it is very difficult and high in cost to construct new ducts and/or tunnels for power cables in metropolitan areas. HTS (High Temperature Superconducting) cable has the several useful characteristics such as increased power density, stronger fields and/or reduced losses. Therefore HTS cable can allow more power to be moved in existing ducts, which means very large economical and environmental benefits. In these days, companies world-wide have conducted researches on HTS cable. A development project for a 22.9kV class HTS cable is proceeding at a research center and university in Korea. In this paper, we investigate the expected price of HTS cable to have a merit in viewpoint of economic aspect. First, life-cycle cost of conventional cable is calculated and based on this, the expected price of HTS cable is evaluated, which HTS cable is competitive against conventional cable.

  • PDF

Development of EMTDC model component for HTS power cable considering critical current, critical temperature and recovery time (임계전류, 임계온도 및 회복시간을 고려한 초전도 전력케이블의 EMTDC 모델 컴포넌트 개발)

  • Bang, Jong-Hyun;Kim, Jae-Ho;Sim, Ki-Deok;Cho, Jeon-Wook;Yoon, Jae-Young;Park, Min-Won;Yu, In-Keun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.1
    • /
    • pp.39-44
    • /
    • 2006
  • Before applying HTS power cable to the real utility. system analysis should be carried out by some simulation tools . Hereby the electrical power system analysis is very important for practical use of HTS devices. Nowadays PSCAD/EMTDC simulation tool is one of the most popular and useful analysis tool for the electrical power system analysis. Unfortunately the model component for HTS power cable is not provided in the PSCAD/EMTDC simulation tool In this paper. the EMTDC model component for HTS power cable has been developed considering critical current, critical temperature and recovery time constant that depend on the sorts of HTS wire. The numerical model of HTS Power cable in PSCAD/EMTDC was designed by using the real experimented data obtained from the real HTS 1G wire test. The utility application analysis of HTS power cable was also performed using the developed model component and the parameters of the real utility network in this study. The author's got good results. The developed model component for HTS power cable could be variously used when the power system includes HTS power cable, especially it will be readily analyzed by PSCAD/EMTDC in order to obtain the data for the level of fault current power flow, and power losses, and so on.

Review of the design, production and tests of compact AC HTS power cables

  • Fetisov, S.S.;Zubko, V.V.;Nosov, A.A.;Zanegin, S.Yu.;Vysotsky, V.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.4
    • /
    • pp.31-39
    • /
    • 2020
  • Power cables made of high temperature superconductors (HTS) are considered as most advanced applications of superconductivity for electro-energetics. Several cables made of the First Generation (1G) HTS wires have been produced and installed to electrical grids worldwide. Power cables made of the Second Generation HTS wires (2G or Coated Conductors) are in active development. Most basic principles of HTS power cables development have been published in many works since 90-ties. In this Review we would like to present our new developments mostly directed to 2G HTS compact power cables. We are presenting the methods to optimize a design of 2G AC compact power cable providing uniform current distribution among cable layers and the production technology approaches to implement such a design. AC losses measurements in such cables and other test methods are described. Some problems of the development 2G HTS power cables with small diameters are discussed. We presented as examples designs, developments and test results of two major coaxial cables designs: single-phase (cable core and a shield) and three-phase (triaxial: with three coaxial phases).

RTDS-based Model Component Development of a Tri-axial HTS Power Cable and Transient Characteristic Analysis

  • Ha, Sun-Kyoung;Kim, Sung-Kyu;Kim, Jin-Geun;Park, Minwon;Yu, In-Keun;Lee, Sangjin;Kim, Jae-Ho;Sim, Kideok
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2083-2088
    • /
    • 2015
  • The transient characteristics of the tri-axial High Temperature Superconducting (HTS) power cable are different from those of a conventional power cable depending on whether the cable is under a steady or transient state due to the quench. Verification using simulation tools is required to confirm both the characteristics of the cable and the effect of the cable when it is applied to a real utility. However, a component for the cable has not been provided in simulation tools; thus the RTDS-based model component of the tri-axial HTS power cable was developed, and a simulation was performed under the transient state. The considered properties of model component include resistance, reactance and temperature. Simulation results indicate the variation of HTS power cable condition. The results are used for the transient characteristic analysis and stability verification of the tri-axial HTS power cable. In the future, the RTDS-based model component of the cable will be used to implement the hardware-in-the-loop simulation with a protection device.

A Study on the Application of 22kV class Superconducting Cable in Utility Network (전력회사 계통에 22kV급 초전도 케이블 도입을 위한 적용 개소 고찰)

  • 김종율;윤재영;이승렬
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.2
    • /
    • pp.20-29
    • /
    • 2003
  • As power systems grow more complex and power demands increase, the need of underground transmission system is increasing gradually. But it is very difficult and high in cost to construct new ducts and/or tunnels for power cables in metropolitan areas. HTS (High Temperature Superconducting) cable can carry very high current densities with strongly reduced conductor loss and allow high power transmission at reduced voltage. Therefore HTS cable can transfer more power to be moved in existing ducts, which means very large economical and environmental benefits. A development project for a 22kV class HTS cable is ongoing at a research centers, and the cable manufacturer in Korea. In this paper, we carried out investigation for application of 22kV class HTS cable in Korean utility networks. The results show that the HTS cable is applicable to replace IPB in pumping-up power plant, withdrawal line in distributed generation, withdrawal line in complex power plant, and conventional under ground cable. Finally, as the cost of HTS wire and refrigeration drops, the technical and economical potential of HTS cable is evaluated positively.

Increased impedance by quench at a shield layer of HTS power cable for fault current limiting function

  • Choi, Youngjun;Kim, Dongmin;Cho, Jeonwook;Sim, Kideok;Kim, Sungkyu;Kim, Seokho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.4
    • /
    • pp.59-63
    • /
    • 2019
  • To reduce the fault current below the current capacity of a circuit breaker, researches on HTS (High Temperature Superconductor) power cables with fault current limiting (FCL) function are increasing. An FCL HTS power cable transports current with low a impedance during normal operation. Yet, it limits the fault current by an increased inductive or resistive impedance of conducting layer when quench occurs at the FCL HTS power cable by the large fault current. An inductive type FCL HTS power cable uses increased inductive impendence caused by leakage magnetic flux outside the cable core when the quench occurs at a shield layer losing the magnetic shielding effect. Therefore, it has an advantage of less resistive heating than resistive type FCL HTS power cable and temperature increase is suppressed. This paper describes an ideal circuit model for the FCL HTS power cable to investigate the effectiveness of increased inductive impedance when quench occurs at the shield layer. Then, FEM analysis is presented with a simplified model cable composed of various iron yokes to investigate the effect of the shape of yoke on the generation of the inductive impedance.