• Title/Summary/Keyword: Habitat

Search Result 3,259, Processing Time 0.029 seconds

Eurasian Otter (Lutra lutra) Habitat Suitability Modeling Using GIS; A case study on Soraksan National Park

  • Park, Chong-Hwa;Joo, Wooyeong;Seo, Chang-Wan
    • Spatial Information Research
    • /
    • v.10 no.4
    • /
    • pp.501-513
    • /
    • 2002
  • Eurasian otter (Lutra lutra) is one of endangered wildlife species whose population size is declining in Korea. To manage and conserve habitat for Eurasian otter, it is crucial to understand which habitat components affect otter habitat qualities. The objectives of this study were to develop a habitat suitability model of Eurasian otter in Soraksan National Park, to validate the model in Odaesan National Park. The research methods of this study were as follows. First, trace data and characters of Eurasian otter habitat were collected with Geographic Information System (GIS) data and Global Positioning System (GPS) receivers between 2000 and 2002. Second, the habitat use factors were identified as habitat characteristics of Eurasian otter and classified with habitat use and availability analyses. Third, significant factors of habitat model were extracted by Chi-square test. The last, Eurasian Otter Habitat Suitability Model (EOHSM) was employed by logistic regression method. Otter habitat use was positively associated with the reeds and shrubs areas adjacent to streams, the size of boulders, and low human disturbance in Soraksan National Park by EOHSM. This model had a classification accuracy of 74.4% at cutoff value of 0.5. Model validation showed a classification accuracy of 86.6 % at cut off value of 0.5 for otter habitat in Odaesan National Park.

  • PDF

Habitat selection in the lesser cuckoo, an avian brood parasite breeding on Jeju Island, Korea

  • Yun, Seongho;Lee, Jin-Won;Yoo, Jeong-Chil
    • Journal of Ecology and Environment
    • /
    • v.44 no.2
    • /
    • pp.106-114
    • /
    • 2020
  • Background: Determining patterns of habitat use is key to understanding of animal ecology. Approximately 1% of bird species use brood parasitism for their breeding strategy, in which they exploit other species' (hosts) parental care by laying eggs in their nests. Brood parasitism may complicate the habitat requirement of brood parasites because they need habitats that support both their host and their own conditions for breeding. Brood parasitism, through changes in reproductive roles of sex or individual, may further diversify habitat use patterns among individuals. However, patterns of habitat use in avian brood parasites have rarely been characterized. In this study, we categorized the habitat preference of a population of brood parasitic lesser cuckoos (Cuculus poliocephalus) breeding on Jeju Island, Korea. By using compositional analyses together with radio-tracking and land cover data, we determined patterns of habitat use and their sexual and diurnal differences. Results: We found that the lesser cuckoo had a relatively large home range and its overall habitat composition (the second-order selection) was similar to those of the study area; open areas such as the field and grassland habitats accounted for 80% of the home range. Nonetheless, their habitat, comprised of 2.54 different habitats per hectare, could be characterized as a mosaic. We also found sexual differences in habitat composition and selection in the core-use area of home ranges (third-order selection). In particular, the forest habitat was preferentially utilized by females, while underutilized by males. However, there was no diurnal change in the pattern of habitat use. Both sexes preferred field habitats at the second-order selection. At the third-order selection, males preferred field habitats followed by grasslands and females preferred grasslands followed by forest habitats. Conclusions: We suggest that the field and grassland habitats represent the two most important areas for the lesser cuckoo on Jeju Island. Nevertheless, this study shows that habitat preference may differ between sexes, likely due to differences in sex roles, sex-based energy demands, and potential sexual conflict.

A study on the opinion of "Habitat" of the Habitat Houses' residents (해비타트 주택에 대한 거주자의 의견)

  • 한주연;김선중
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2001.11a
    • /
    • pp.105-112
    • /
    • 2001
  • The purpose of this study is to provide the fundamental data for the "Habitat Houses". The sample consisted of 24 residents who live in Kwang-yang and 47 residents in Asan. Through the personal interview and questionnaire survey, investigated the opinion of "Habitat"of Habitat Houses′residents. The data were analyzed by using spss program. The major findings were summarized as follows : The Habitat residents are low-income families, so this study is suggest. First, Habitat Houses are to locate near the city, second, to reduce the work time of residents. Third, Habitat must development the educationing program for residents. Fourth, Habitat must development management program and must repair the claim.

  • PDF

Wild Boar (Sus scrofa corranus Heude ) Habitat Modeling Using GIS and Logistic Regression (GIS와 로지스틱 회귀분석을 이용한 멧돼지 서식지 모형 개발)

  • 서창완;박종화
    • Spatial Information Research
    • /
    • v.8 no.1
    • /
    • pp.85-99
    • /
    • 2000
  • Accurate information on habitat distribution of protected fauna is essential for the habitat management of Korea, a country with very high development pressure. The objectives of this study were to develop a habitat suitability model of wild boar based on GIS and logistic regression, and to create habitat distribution map, and to prepare the basis for habitat management of our country s endangered and protected species. The modeling process of this restudyarch had following three steps. First, GIS database of environmental factors related to use and availability of wild boar habitat were built. Wild boar locations were collected by Radio-Telemetry and GPS. Second, environmental factors affecting the habitat use and availability of wild boars were identified through chi-square test. Third, habitat suitability model based on logistic regression were developed, and the validity of the model was tested. Finally , habitat assessment map was created by utilizing a rule-based approach. The results of the study were as folos. First , distinct difference in wild boar habitat use by season and habitat types were found, however, no difference in wild boar habiat use by season and habitat types were found , however, ho difference by sex and activity types were found. Second, it was found, through habitat availability analysis, that elevation , aspect , forest type, and forest age were significant natural environmental factors affecting wild boar hatibate selection, but the effects of slope, ridge/valley, water, and solar radiation could not be identified, Finally, the habitat at cutoff value of 0.5. The model validation showed that inside validation site had the classification accuracy of 73.07% for total habitat and 80.00% for cover habitat , and outside validation site had the classification accuracy of 75.00% for total habitat.

  • PDF

Application of Habitat Suitability Models for Assessing Climate Change Effects on Fish Distribution (어류 분포에 미치는 기후변화 영향 평가를 위한 서식적합성 모형 적용)

  • Shim, Taeyong;Bae, Eunhye;Jung, Jinho
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.2
    • /
    • pp.134-142
    • /
    • 2016
  • Temperature increase and precipitation changes caused by change alter aquatic environments including water quantity and quality that eventually affects the habitat of aquatic organisms. Such changes in habitat lead to changes in habitat suitability of the organisms, which eventually determines species distribution. Therefore, conventional habitat suitability models were investigated to evaluate habitat suitability changes of freshwater fish cause by change. Habitat suitability models can be divided into habitat-hydraulic (PHABSIM, CCHE2D, CASiMiR, RHABSIM, RHYHABSIM, and River2D) and habitat-physiologic (CLIMEX) models. Habitat-hydraulic models use hydraulic variables (velocity, depth, substrate) to assess habitat suitability, but lack the ability to evaluate the effect of water quality, including temperature. On the contrary, CLIMEX evaluates the physiological response against climatic variables, but lacks the ability to interpret the effects of physical habitat (hydraulic variables). A new concept of ecological habitat suitability modeling (EHSM) is proposed to overcome such limitations by combining the habitat-hydraulic model (PHABSIM) and the habitat-physiologic model (CLIMEX), which is able to evaluate the effect of more environmental variables than each conventional model. This model is expected to predict fish habitat suitability according to climate change more accurately.

Developing system of forest habitat quality assessment for endangered species (멸종위기 야생생물 산림 서식지 질적 평가 체계 개발)

  • Kwang Bae Yoon;Sunryoung Kim;Seokwan Cheong;Jinhong Lee;Jae Hwa Tho;Seung Hyun Han
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.3
    • /
    • pp.307-315
    • /
    • 2022
  • In terms of habitat conservation, it is essential to develop a habitat assessment system that can evaluate not only the suitability of the current habitat, but also the health and stability of the habitat. This study aimed to develop a methodology of habitat quality assessment for endangered species by analyzing various existing habitat assessment methods. The habitat quality assessment consisted of selecting targeted species, planning of assessment, selecting targeted sites, assessing performance, calculating grade, and expert verification. Target sites were selected separately from core and potential habitats using a species distribution model or habitat suitability index. Habitat assessment factors were classified into ecological characteristic, landscape characteristic, and species-habitat characteristic. Ecological characteristic consisted of thirteen factors related to health of tree, vegetation, and soil. Landscape characteristic consisted of five factors related to fragment and connectivity of habitat. Species-habitat characteristic consisted of factors for evaluating habitat suitability depending on target species. Since meanings are different depending on characteristics, habitat quality assessment of this study could be used by classifying results for each characteristic according to various assessment purposes, such as designation of alternative habitats, assessment of restoration project, and protected area valuation for endangered species. Forest habitat quality assessment is expected to play an important role in conservation acts of endangered species in the future through continuous supplementation of this system in regard to quantitative assessment criteria and weighting for each factor with an influence.

Comparison between in situ Survey and Satellite Imagery with Regard to Coastal Habitat Distribution Patterns in Weno, Micronesia (마이크로네시아 웨노섬 연안 서식지 분포의 현장조사와 위성영상 분석법 비교)

  • Kim, Taihun;Choi, Young-Ung;Choi, Jong-Kuk;Kwon, Moon-Sang;Park, Heung-Sik
    • Ocean and Polar Research
    • /
    • v.35 no.4
    • /
    • pp.395-405
    • /
    • 2013
  • The aim of this study is to suggest an optimal survey method for coastal habitat monitoring around Weno Island in Chuuk Atoll, Federated States of Micronesia (FSM). This study was carried out to compare and analyze differences between in situ survey (PHOTS) and high spatial satellite imagery (Worldview-2) with regard to the coastal habitat distribution patterns of Weno Island. The in situ field data showed the following coverage of habitat types: sand 42.4%, seagrass 26.1%, algae 14.9%, rubble 8.9%, hard coral 3.5%, soft coral 2.6%, dead coral 1.5%, others 0.1%. The satellite imagery showed the following coverage of habitat types: sand 26.5%, seagrass 23.3%, sand + seagrass 12.3%, coral 18.1%, rubble 19.0%, rock 0.8% (Accuracy 65.2%). According to the visual interpretation of the habitat map by in situ survey, seagrass, sand, coral and rubble distribution were misaligned compared with the satellite imagery. While, the satellite imagery appear to be a plausible results to identify habitat types, it could not classify habitat types under one pixel in images, which in turn overestimated coral and rubble coverage, underestimated algae and sand. The differences appear to arise primarily because of habitat classification scheme, sampling scale and remote sensing reflectance. The implication of these results is that satellite imagery analysis needs to incorporate in situ survey data to accurately identify habitat. We suggest that satellite imagery must correspond with in situ survey in habitat classification and sampling scale. Subsequently habitat sub-segmentation based on the in situ survey data should be applied to satellite imagery.

Application of the Habitat Evaluation Procedure(HEP) for Legally Protected Wildbirds using Delphi Technique to Environmental Impact Assessment - In case of the Common Kestrel(Falco tinnunculus) in four areas (Paju, Siheung, Ansan, Hwaseong) - (델파이기법을 이용한 법적보호종 서식환경평가의 환경영향평가 적용방안 개발 - 파주시, 시흥시, 안산시, 화성시에서의 황조롱이를 대상으로 -)

  • Lee, Seok-Won;Rho, Paikho;Yoo, Jeong-Chil
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.3
    • /
    • pp.277-290
    • /
    • 2013
  • This study was carried out to propose the new procedure to apply Habitat Evaluation Procedure(HEP) of target species using delphi technique, which is suitable to develop endangered species with few researches and ecological knowledges. To identify habitat quality of specific species in development project site, we can develop habitat model and create habitat suitability maps. In this study, we select the Common Kestrel(Falco tinnunculus) as target species in four areas(Paju, Siheung, Ansan, Hwaseong) which is located near the Seoul metropolitan area. The Delphi technique was selected to get the reliable information on the species and habitats requirements. Through the delphi approach, seven habitat components were determined as suitable variables for the Common Kestrel: density($n/km^2$) of small mammals, area($km^2$) of bare-grounds, pasturelands and riparian, and open area(%), spatial distribution and area of croplands, landscape diversity, breeding sites(tall trees, cliffs, high-rise buildings), and the length of shelf. Habitat variables used in this model were classified into two categories: % of suitable land-cover type(open areas, croplands, pasturelands, wetlands, and baregrounds) and the quality of feeding sites(within 250m from edges of woodlands). Habitat quality of the Common Kestrel was assessed against occurred sites derived from the nationwide survey. Predicted habitat suitability map were closely related to the observed sites of the endangered avian species in the study areas. With the habitat suitability map of the Common Kestrel, we assess the environmental impacts with habitat loss after development project in environmental impact assessment.

Habitat Potential Evaluation Using Maxent Model - Focused on Riparian Distance, Stream Order and Land Use - (Maxent 모형을 이용한 서식지 잠재력 평가 - 하천으로부터의 거리, 하천의 차수, 토지이용을 중심으로-)

  • Lee, Dong-Kun;Kim, Ho-Gul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.6
    • /
    • pp.161-172
    • /
    • 2010
  • As the interest on biodiversity has increased around the world, researches about evaluating potential for habitat are also increasing to find and comprehend the valuable habitats. This study focus on comprehending the significance of stream in evaluating habitat's potential. The purpose of this study is to evaluate habitat potential with applying stream as a main variable, and to comprehend the relationship between the variables and habitat potential. Basin is a unit that has hydrological properties and dynamic interaction with ecosystem. Especially, biodiversity and suitability of habitat in basin area has direct correlation with stream. Existing studies also are proposing for habitat potential evaluation in basin unit, they applied forest, slope and road as main variables. Despite stream is considered the most important factor in basin area, researchers haven't applied stream as a main variable. Therefore, in this study, three variables that can demonstrate hydrological properties are selected, which are, riparian distance, stream order and land use disturbance, and evaluate habitat potential. Habitat potential is analyzed by using Maxent (Maximum entropy model), and vertebrate's presence data is used as dependent variables and stream order map and land cover map is used as base data of independent variables. As a result of analysis, habitat potential is higher at riparian and upstream area, and lower at frequently disturbed area. Result indicates that adjacent to stream, upstream, and less disturbed area is the habitat that vertebrate prefer. In particular, mammals prefer adjacent area of stream and forest and reptiles prefer upriver area. Birds prefer adjacent area of stream and midstream and amphibians prefer adjacent area of stream and upriver. The result of this research could help to establish habitat conservation strategy around basin unit in the future.

Heterogeneous Habitat for Increasing Biological Diversity

  • Lee, Sang-Don
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.4
    • /
    • pp.337-341
    • /
    • 2003
  • Habitat heterogeneity can enhance biological diversity by providing variation in structural diversity. This paper reviewed heterogeneous habitat serves as a population stability and superior demographic performance (e.g., high density, survivorship, reproductive rate) can be observed compared with organisms with inferior demographic performance. The idea of habitat variation has been further developed in modelling. Furthermore the size and configuration (distribution) of a patch (of a particular habitat type) become effective for the stability of population through hiding places and food resources. Species diversity is related to habitat complexity that provides structural diversity to ground -dwelling organisms. Finally coarse woody debris can enhance habitat complexity thus stabilizing population fluctuation and increasing survivorship.