• Title/Summary/Keyword: Halocynthia aurantium

Search Result 10, Processing Time 0.043 seconds

Gonadal Changes during the Annual Reproductive Cycle of the Ascidian Halocynthia aurantium (Pallas)

  • Lee, Wang Jong;Kim, Gil Jung
    • Development and Reproduction
    • /
    • v.25 no.4
    • /
    • pp.299-303
    • /
    • 2021
  • The ascidian Halocynthia aurantium (sea peach), a marine invertebrate, belongs to the same genus of the phylum Chordata along with the ascidian Halocynthia roretzi (sea pineapple), which is one of the model animals in the field of developmental biology. The characteristics of development and reproduction of H. aurantium are not yet known in detail. In order to find out the spawning period of H. aurantium, we investigated development of the gonads during the annual reproductive cycle. Testis and ovary were both in the bisexual gonads (ovotestes) of H. aurantium, which is a hermaphrodite like H. roretzi. In H. aurantium, the right gonad was longer and slightly larger than the left gonad throughout the year. In each gonad, the number of the testis gonoducts was slightly higher than that of the ovary gonoducts. These features were similarly observed in H. roretzi. However, the number of the testis gonoducts and the ovary gonoducts in each gonad of H. aurantium was about half that of H. roretzi. The gonads of H. aurantium contracted during the winter and summer seasons. The gonads decreased to the smallest size around February, and then started to increase again in March. The gonads were most developed in September of the year. Therefore, it is estimated that the spawning of H. aurantium begins around this period.

Embryonic Development and Metamorphosis of the Ascidian Halocynthia aurantium (붉은멍게(Halocynthia aurantium)의 배발생과 변태)

  • Kim, Gil Jung
    • Journal of Marine Life Science
    • /
    • v.5 no.2
    • /
    • pp.58-63
    • /
    • 2020
  • The ascidian Halocynthia aurantium (sea peach), which belongs to the phylum Chordata, is thought to be a valuable organism of aquaculture like H. roretzi (sea pineapple), but its biological characteristics such as development and ecology are not well known. In this study, in order to obtain basic data for H. aurantium farming, the development processes of H. aurantium inhabiting the east coast of Gangwon-do were investigated and compared with those of H. roretzi, a related species. As a result, the morphology and developmental stages of the fertilized eggs, embryos and larvae of H. aurantium were very similar to those of H. roretzi. Fertilized eggs of H. aurantium took about 42.1 hours to hatch at 11℃, almost similar to 40.9 hours of H. roretzi. The time required for larvae to metamorphose into juveniles after hatching was very similar between the two species. The hatched larvae of the two species became juveniles with oral and atrial siphons after 23 days at 11℃. Both types of embryos developed slowly in seawater at low temperatures and rapidly developed at high temperatures. Fertilized eggs of H. aurantium hatched in an average of 62.3 hours at 9℃, 42.1 hours at 11℃, and 36.3 hours at 13℃, whereas those of H. roretzi hatched in an average of 60.4 hours, 40.9 hours, and 35.2 hours. Most of H. aurantium embryos did not develop normally above 15℃, so it is thought that attention is needed in the seed production processes.

Effects of Temperature and Salinity on Development of Sea Peach Halocynthia aurantium (붉은멍게 Halocynthia aurantium 발생에 관한 수온 및 염분의 영향)

  • Lee, Chu;Park, Min-Woo;Lee, Chae-Sung;Kim, Su-Kyoung;Kim, Wan-Ki
    • Journal of Environmental Science International
    • /
    • v.18 no.10
    • /
    • pp.1171-1179
    • /
    • 2009
  • The solitary ascidian, Halocynthia aurantium, which is commonly called the sea peach because of its coloration and general shape, is a valuable organism of benthic marine population in the northern region of the East Sea, Korea. It is seldom found at a depth of less than 10 meters and the sea peach is frequently observed in large populations between 20 and 100 meters. It appears to prefer attachment to vertical rocks faces and artificial cement blocks exposed to the currents. Mass mortality and reduction of resources in sea peach, H. aurantium, were occurred in the benthic area of the northern region of the East Sea because of the rapid fluctuation of environmental factors such as temperature and salinity due to mass rainfall in summer and going up north of a strong warm current in winter. Therefore, we examined the effects of temperature and salinity on embryonic development of fertilized eggs, tadpole larva to metamorphosis, and attachment to siphon development. Laboratory-raised larvae were studied using a two-factorial experimental design with four levels of temperature(8, 12, 16 and $20^{\circ}C$) and four levels of salinity(20, 25, 30 and 34 psu). The ascidian larvae of H. aurantium survived environmental conditions between temperature of $8{\sim}20^{\circ}C$ and salinity of 25~34 psu and exhibited positive growth at $8{\sim}16^{\circ}C$ and 30~34 psu. Fertilized eggs have not developed at lower salinity of 20 psu irrespective of temperature range tested and have showed an abnormal development at the salinity of 25 psu between higher temperatures of 20 and $24^{\circ}C$. This result suggests that temperature increase and salinity reduction depending on environmental fluctuation may have significant impacts on population variation of H. aurantium in the northern region of the East Sea.

Immunomodulatory Activities of Body Wall Fatty Acids Extracted from Halocynthia aurantium on RAW264.7 Cells

  • Monmai, Chaiwat;Jang, A-Yeong;Kim, Ji-Eun;Lee, Sang-Min;You, SangGuan;Kang, SeokBeom;Lee, Tae Ho;Park, Woo Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.12
    • /
    • pp.1927-1936
    • /
    • 2020
  • Tunicates are known to contain biologically active materials and one species in particular, the sea peach (Halocynthia aurantium), has not been thoroughly studied. In this study we aimed to analyze the fatty acids profile of the H. aurantium body wall and its immunomodulatory effects on RAW264.7 macrophage-like cells. The fatty acids were classified into three categories: saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), and polyunsaturated fatty acids (PUFAs). Omega-3 fatty acid content, including EPA and DHA, was higher than omega-6 fatty acids. H. aurantium body wall fatty acids exhibited enhanced immune response and anti-inflammatory effects on RAW264.7 macrophage-like cells. Under normal conditions, fatty acids significantly increase nitric oxide (NO) and PGE2 production in a dose-dependent manner, thereby improving the immune response. On the other hand, in LPS-treated RAW264.7 cells, fatty acids significantly decreased nitric oxide (NO) and PGE2 production in a dose-dependent manner, thereby enhancing anti-inflammatory effects. Fatty acids transcriptionally control the expression of the immune-associated genes, iNOS, IL-1β, IL-6, COX-2, and TNF-α, via the MAPK and NF-κB signaling cascades in RAW264.7 cells. However, in LPS-stimulated RAW264.7 cells, H. aurantium body wall fatty acids significantly inhibited expression of inflammatory cytokine; similarly, production of COX-2 and PGE2 was inhibited. The results of our present study provide insight into the immune-improving and anti-inflammatory effects of H. aurantium body wall fatty acids on macrophages. In addition, our study demonstrates that H. aurantium body wall is a potential source of immune regulatory components.

Quality Characteristics and Antioxidant Activity Research of Halocynthia roretzi and Halocynthia aurantium (우렁쉥이와 붉은멍게의 품질특성 및 항산화활성 연구)

  • Jo, Ji-Eun;Kim, Kyoung-Hee;Yoon, Mi-Hyang;Kim, Na-Young;Lee, Chu;Yook, Hong-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.10
    • /
    • pp.1481-1486
    • /
    • 2010
  • In this study we investigated the antioxidant activities and quality characteristics of Halocynthia aurantium and Halocynthia roretzi. The pH of H. aurantium was higher than that of H. roretzi. The volatile basic nitrogens of H. roretzi and H. aurantium were 22.41 mg% and 16.80 mg%, respectively. Lightness and yellowness of H. roretzi were higher than those of H. aurantium, but redness of H. aurantium was higher. The results of sensory evaluation showed that the H. aurantium was better for color, odor, taste and acceptability. Total combined amino acid contents of H. roretzi and H. aurantium were $36368.23\;{\mu}mol/g$ and $36500.12\;{\mu}mol/g$, respectively. Our results showed that H. roretzi had relatively higher contents of Asp, Glu, Gly, DPPH radical scavenging activity, ABTS radical scavenging activity and reducing power. Also total phenol content of H. roretzi was higher than that of H. aurantium. The organoleptic properties of the H. aurantium were superior but the antioxidant activities were relatively lower than those of H. aurantium. For commercial usage, additional study would be helpful in the two ascidians to recommend.

Genotoxicity Study on Khal, a Halocidin Derivative, in Bacterial and Mammalian Cells

  • Kim, Youn-Jung;Kim, Mi-Soon;Jeon, Hee-Kyoung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.3
    • /
    • pp.151-158
    • /
    • 2006
  • Khal was a synthetic congener of halocidin, a heterodimeric peptide consisting of 19 and 15 amino acid residues detected in Halocynthia aurantium. This compound was considered a candidate for the development of a novel peptide antibiotic. The genotoxicity of Khal was subjected to high throughput toxicity screening (HTTS) because they revealed strong antibacterial effects. Mouse lymphoma thymidine kinase ($tk^{+/-}$) gene assay (MOLY), single cell gel electrophoresis (Comet) assay and chromosomal aberration assay in mammalian cells and Ames reverse mutation assay in bacterial system were used as simplified, inexpensive, short-term in vitro screening tests in our laboratory. These compounds are not mutagenic in S. typhimurium TA98 and TA100 strains both in the presence and absence of metabolic activation. Before performing the comet assay, $IC_{20}$ of Khal was determined the concentration of $25.51\;{\mu}/mL\;and\;21.99\;{\mu}g/mL$ with and without S-9, respectively. In the comet assay, Khal was not induced DNA damage in mouse lymphoma cell line. Also, the mutation frequencies in the Khal-treated cultures were similar to the vehicle controls. It is suggests that Khal is non-mutagenic in MOLY assay. And no clastogenicity was observed in Khal-treated Chinese hamster lung cells. The results of this battery of assays indicate that Khal has no genotoxic potential in bacterial or mammalian cell systems. Therefore, we suggest that Khal, as the optimal candidates with both no genotoxic potential and antibacterial effects must be chosen.

Carotenoids Components of Tunicata, Shellfishes and Its Inhibitory Effects on Mutagenicity and Growth of Tumor Cell (미색동물 및 패류의 Carotenoids 색소성분과 돌연변이 및 종양세포 증식의 억제효과)

  • 하봉석;백승한;김수영
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.5
    • /
    • pp.922-934
    • /
    • 2000
  • To investigate the composition of carotenoids present in marine organisms and the biological activity of the carotenoids, carotenoids of the muscles and tunic of tunicates and shellfishes were isolated and identified. Anitmutagenic activities of the carotenoids for S. typhimurium TA 98 and cytotoxic activity for cancer cell lines were determined. Total carotenoid contents in the muscle of tunicata ranged from 18.65 mg% to 2.39 mg%. The highest amount of the total carotenoid was found in the muscle of Halocynthia aurantium, followed by Styela clava (HERDMAN), H. roretzi, H. hilgendorfi f. igaboya, H. hilgendorfi f. retteri, S. plicata (LESUEUR) in order. Interestingly, total carotenoid content in the muscle of S. clava (HERDAMAN) was higher than that of H. roretzi. Total carotenoid content of all tunicata, other than H. aurantium and H. roretzi, were higher in muscle than tunic. The major carotenoids in H. roretzi, H. aurantium, S. plicata (LESUEUR), and S. clava (HERDAMAN) were cynthiaxanthin (25.1∼42.2%), halocynthiaxanthin (9.7∼26.3%), diatoxanthin (8.0∼18.7%) and β-carotene (7.7%∼21.7%). Similarly, cantaxanthin (19.6%), cynthiaxanthin (15.4%), halocynthiaxanthin (14.8%), and (3R, 3'R), (3S, 3'S)-astaxanthin (22.6%) in H. hilgendorfi f. retteri and fucoxanthin (26.6%), cynthiaxanthin (21.8%), halocynthiaxanthin (15.2%), and β-carotene (9.3%) in H. hilgendorfi f. igaboya were major carotenoids in both tunicate. However, the composition of carotenoids in muscle and tunic of tunicata was similar each other. Among the shellfishes examined, total carotenoid content of the muscle of Peronidia venulosa (Schrenck) and Corbicula fluminea, and of the gonad of Atrina pinnata and Chlamys farreri, was ranged from 2.51 to 6.83 mg% which were relatively higher than that of other shellfishes. The composition of the carotenoids of shellfishes, which might depend upon their living environments, was varied. But cynthiaxanthin (15.9∼39.0%) and zeaxanthin (9.6∼21.9%) in gonad of C. farreri, and muscles of Buccinum Volutharpa perryi (JAY) and Crassostrea gigas, cynthiaxanthin (21.5∼48.6%) and mytiloxanthin (14.6%) in muscle of C.fluminea and gonad of A. pinnata, and canthaxanthin (60.6%) and isozeaxanthin (20.5%) in muscles of P. venulosa (Schrenck), and β-carotene (23.7%∼37.8%) and zeaxanthin (18.2∼20.4) in muscles of Semisulcospira libertina and Meretrix lusoria were major carotenoids. Interestingly, diester type-carotenoids were present along with free type-carotenoids in muscles of C. gigas. antimutagenic effect of the carotenoids isolated from tunicata and shellfishes against 2-amino-3-methylimidazol [4,5-f]quinoline (IQ) for S. typhimurium TA 98 was proportional to the amount (20, 50 and 100㎍/plate) treated. Mutagenicity of IQ was significantly reduced by astaxanthin, isozeaxanthin, mytiloxanthin and halocynthiaxanthin, whereas the mutagenicity of aflatoxin B₁(AFB₁) was significantly reduced by β-carotene, isozeaxanthin, and mytiloxnthin. Growth inhibition effect of carotenoids isolated from tunicata and shellfishes for cancer cell was proportional to the amount (5, 10, and 20㎍/plate) treated. The growth of HeLa cell by β-carotene, cynthiaxanthin, astaxanthin and halocynthiaxanthin, NCI-H87 cell by β-carotene, astaxanthin, cynthiaxanthin, and halocynthiaxanthin, HT-29 cell by β-carotene, cynthiaxanthin, mytiloxanthin and halocynthiaxanthin, and MG-63 cells by β-carotene, cynthiaxanthin, astaxanthin, canthaxanthin and halocynthiaxanthin were statistically reduced.

  • PDF