• Title/Summary/Keyword: Hard soil

Search Result 215, Processing Time 0.022 seconds

Effects of the Soil Moisture and Hardness on the Drawing Performance of a Two-Wheel Tractor. (토양수분과 경도가 동력경운기의 견인성능에 미치는 영향)

  • 박호석;차균도
    • Journal of Biosystems Engineering
    • /
    • v.2 no.1
    • /
    • pp.25-32
    • /
    • 1977
  • This experiment was conducted in order to find out the drawing performance of a two-wheel tractor under different levels of the soil moisture and hardness, so as to obtain some basic data for improving their drawing performance. With fairly homogeneous soil, 5 levels of soil moisture contents (8, 13, 17, 20 and 23%) and 3 levels of soil hardness (0 , 2 and 4kg/$cm^2$) were selected for this experiment.The summerized results are as follows ;1. The draft force, on the hard soil (hardness ; 4kg/$cm^2$), had a distinct tendency to decrease with the increasing soil moisture. On the medium soil (hardness ; 2 kg/$cm^2$), and the soft soil (hardness ; 0kg$cm^2$), the draft force showed the highest when the moisture contents were within the range of 16-19%.But the maximum draft force, on the soft soil, was higher than that on the medium soil by 10 %. 2. The driving axle torque increased with increasing soil by 10 %. 3.The values of horizontal distance between the soil reaction point and axle shaft were within the range of 0~10cm , and it had the tendency to increase with the increasing soil moisture. Also, it s value was the largest on the hard soil and the smallest on the soft soil. 4.The tractive efficiency decreased with the increasing soil moisture. On the hard soil, the average value of tractive efficiency was higher than that on the medium soil by 19.0% and that on the soft soil was lower than that on the medium soil. 5.The traction ratio were within the range of 30 ~45%, and their changing tendency with respect to the soil moisture was similar to that in the case of the draft force. 6. The travel resistance ratio tended to increased with increasing soil moisture, and the highest value was found on the soft soil, and the lowest on the hard soil.

  • PDF

Face stability analysis of large-diameter underwater shield tunnel in soft-hard uneven strata under fluid-solid coupling

  • Shanglong Zhang;Xuansheng Cheng;Xinhai Zhou;Yue Sun
    • Geomechanics and Engineering
    • /
    • v.32 no.2
    • /
    • pp.145-157
    • /
    • 2023
  • This paper aims at investigating the face stability of large-diameter underwater shield tunnels considering seepage in soft-hard uneven strata. Using the kinematic approach of limit upper-bound analysis, the analytical solution of limit supporting pressure on the tunnel face considering seepage was obtained based on a logarithmic spiral collapsed body in uneven strata. The stability analysis method of the excavation face with different soft- and hard-stratum ratios was explored and validated. Moreover, the effects of water level and burial depth on tunnel face stability were discussed. The results show the effect of seepage on the excavation face stability can be accounted as the seepage force on the excavation face and the seepage force of pore water in instability body. When the thickness ratio of hard soil layer within the excavation face exceeds 1/6D, the interface of the soft and hard soil layer can be placed at tunnel axis during stability analysis. The reliability of the analytical solution of the limit supporting pressure is validated by numerical method and literature methods. The increase of water level causes the instability of upper soft soil layer firstly due to the higher seepage force. With the rise of burial depth, the horizontal displacement of the upper soft soil decreases and the limit supporting pressure changes little because of soil arching effect.

Effect of Slip on Tractive Performance of Driving Wheel (구동륜 슬립이 견인성능에 미치는 영향)

  • 박원엽
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.234-243
    • /
    • 2002
  • When a vehicle is operated over sort terrain, torque(or soil thrust) applied to driving wheel brings about shear displacement far soil due to compression and shear failure of soil under tire. This shear displacement give rise to slip and a additional sinkage due to slip. This additional sinkage is usually referred to as slip-sinkage. The slip-sinkage is affected by soil conditions and inflation pressure of tire. This slip-sinkage influence tractive performance on driving wheel . We conducted the experimental study far investigating the effect of slip on sinkage and tractive performance of driving wheel, such as motion resistance, thrust and drawbar pull. The experiment was carried out over three different soil conditions(soft, hard and very hard soil) far a tire with three levels of inflation pressure(120kPa, 240kPa and 360kPa). The results of this study show qualitatively slipsinkage characteristics and slip-tractive performance relationships of driving wheel with soil conditions and inflation pressure of tire.

Pipeline deformation caused by double curved shield tunnel in soil-rock composite stratum

  • Ning Jiao;Xing Wan;Jianwen Ding;Sai Zhang;Jinyu Liu
    • Geomechanics and Engineering
    • /
    • v.36 no.2
    • /
    • pp.131-143
    • /
    • 2024
  • Shield tunneling construction commonly crosses underground pipelines in urban areas, resulting in soil loss and followed deformation of grounds and pipelines nearby, which may threaten the safe operation of shield tunneling. This paper investigated the pipeline deformation caused by double curved shield tunnels in soil-rock composite stratum in Nanjing, China. The stratum settlement equation was modified to consider the double shield tunneling. Moreover, a three dimensional finite element model was established to explore the effects of hard-layer ratio, tunnel curvature radius, pipeline buried depth and other influencing factors. The results indicate the subsequent shield tunnel would cause secondary disturbance to the soil around the preceding tunnel, resulting in increased pipeline and ground surface settlement above the preceding tunnel. The settlement and stress of the pipeline increased gradually as buried depth of the pipeline increased or the hard-layer ratio (the ratio of hard-rock layer thickness to shield tunnel diameter within the range of the tunnel face) decreased. The modified settlement calculation equation was consistent with the measured data, which can be applied to the settlement calculation of ground surface and pipeline settlement. The modified coefficients a and b ranged from 0.45 to 0.95 and 0.90 to 1.25, respectively. Moreover, the hard-layer ratio had the most significant influence on the pipeline settlement, but the tunnel curvature radius and the included angle between pipeline and tunnel axis played a dominant role in the scope of the pipeline settlement deformation.

Soil Compaction of Hiking Trails Induced by Human Trampling in Mt. Halla and Darangshiorum (한라산과 다랑쉬오름 등산로의 답압에 의한 토양 압밀현상)

  • Kim, Tae-Ho
    • Journal of the Korean association of regional geographers
    • /
    • v.9 no.2
    • /
    • pp.169-179
    • /
    • 2003
  • The hardness and physical properties of soils were measured in hiking trails of Mt. Halla and Darangshiorum in Jeju Island to examine the characteristics and formative factors of an aquiclude induced by human trampling. The soil hardness, being generally the highest on trails, decreases outward and shows the lowest on adjacent slopes in a natural condition. The bulk density and solid phase also demonstrates a similar tendency, then implying that the aquiclude occurs in the central part of trails. Although the formation of a hard layer in trails is fundamentally attributed to human trampling, the environmental factors such as landform, lithology, soil and vegetation play a role in the occurrence of the aquiclude. Soil compaction varies with the gradient and location of trails which affects a transport and deposition of soil particles to produce a hard layer. Soil compaction also depends on the physical properties of soils including the soil texture largely affected by lithology. Vegetation is not directly related with the formation of a hard layer, but affects its dimensions through an enlargement rate of bare trails depending on the response and resistance of plants to human trampling.

  • PDF

Load Transfer Analysis of Drilled Shafts Reinforced by Soil Nails (Soil Nail로 보강된 현장타설말뚝의 하중전이 분석)

  • 정상섬;함홍규;이대수
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.1
    • /
    • pp.37-47
    • /
    • 2004
  • In this study the load distribution and settlement of soil nailed-drilled shafts subjected to axial loads were evaluated by a load-transfer approach. Special attention was given to the reinforcing effects of soil nails placed from the shafts to surrounding weathered- and soft-rocks based on an analytical study and a numerical analysis. An analytical method that takes into account the number, the positions on the shaft, the grade, and the inclination angle at which the soil nails are placed was developed using a load transfer curve methods. Through the comparative study, it is found that the prediction by present approach simulates well the general trends observed by the in-situ measurements and numerical results SHAFT 4.0. It is also found that the reinforcing effects of soil nails increases in the order of hard-, soft- and weathered-rock since the ultimate shaft resistance far large bored piles in weathered rocks is fully mobilized after small displacements of the shaft, compared to the soft- and hard-rocks and subsequently the side resistance is transferred down to the soil nails.

Analysis on the Site Characteristics for the Restoration of Sangrim Woodlands in Hamyang-Gun, Korea (함양 상림 복원을 위한 입지특성 분석)

  • Park, Jae-Hyeon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 2005
  • This study was conducted to establish a management plan for the Sangrim Woodlands restoration by analyzing the site characteristics of the Sangrim Woodlands Natural Monument(Natural Monument 154) in Hamyang-Gun, Gyoungsangnam-Do, Korea. Site preparation to enhance soil aeration should be applied because soil bulk density in all study sites was higher than soil compaction of natural forest soil area. Herbaceous plants could be introduced to hard soil strength for restoration of areas compacted by visitors. Also, visitors around forest areas should be restricted to enhance natural soil restoration. Soil pH in the Sangrim Woodlands was between 4.18 and 4.90. The values were lower than pH 5.34 of Korean forest soil originated from metamorphic parent materials. Lime fertilizer could be applied to reduce soil acidification in the woodlands. Short and long-term management plans such as periodical fertilizations to improve plant growth should be established to restore the Sangrim Woodlands which have high soil compaction, low soil pH and organic matter content.

Adsorption of Cadmium and Lead on Organobentonite (유기 벤토나이트에 의한 카드뮴과 납의 흡착특성)

  • 유지영;최재영;박재우
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.3
    • /
    • pp.21-29
    • /
    • 2001
  • Organobentonite modified with hexadecyltrimethylammonium (HDTMA) was used to quantify adsorption of heavy metals. Adsorption of cadmium and lead increased with increasing pH and soil/solution ratio. Based on these experiments, an optimal soil/solution ratio and an optimal pH was selected. Adsorption experiments with cadmium and lead were conducted to quantify adsorption selectivity on bentonite and organobentonite. Adsorption of heavy metals on organobentonite was slightly reduced relative to bentonite. Because of competition between cadmium and lead, adsorption of each metal was reduced due to the presence of the other. Adsorption selectivity of cadmium was higher than lead. This study used the principle of hard soft-acid-base (HSAB) to interpret adsorption.

  • PDF

STUDIES ON BLOOD GROUP SPECIFIC SUBSTANCE IN THE DENTAL HARD TISSUE -IDENTIFICATION OF A. B. O. BLOOD GROUPS FROM DENTAL HARD TISSUE LEFT STANDING UNDER VARIOUS CONDITIONS- (치아편조직의 혈형물질 검출에 관한 실험적 연구 -제매장조건하의 치아경조직에서 혈액형판정-)

  • Kim, Chong-Youl
    • The Journal of the Korean dental association
    • /
    • v.19 no.5 s.144
    • /
    • pp.449-461
    • /
    • 1981
  • The author studied on the blood groups by the elution tests with teeth left standing under various conditions, and the following results were obtained. 1) The blood group identification with dental hard tissue proved to be possible. 2) In the cases of teeth left under various conditions-formalin fixation, standing in air, soil embedding and immersing in water-the identification of blood groups was possible in every case without any difference on difficulties. 3) The reaction of agglutination was somewhat more obvious in dentin substance than in enamel. 4) About 10 mg of dental hard tissue was recommendable for blood grouping.

  • PDF

Net Penetration Rate of a Large Diameter Shield TBM in Hard Rock (대구경 Shield TBM의 암반층 굴착속도)

  • 박철환;송원경;신중호;천대성
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2001.10a
    • /
    • pp.115-120
    • /
    • 2001
  • In No. 1 tunnel for Kwnagju urban subway construction, net penetration rate of the shield TBM was analyzed. This tunnel of 540 m length is located in soil layers at starting and in hard rocks such as amphibolite and granitic gneiss at ending with 84 m length. The net penetration rate was dropped down to 2∼11 cm/hr in rock while 50∼80 cm/hr in soil. Theoretical penetration rate is analyzed in conditions of machine and rock in order to compare the actual net penetration rate. The relationships between net penetration rate and thrust force is also investigated in this report.

  • PDF