• Title/Summary/Keyword: Hardfacing alloy

Search Result 29, Processing Time 0.031 seconds

Effect of Mn-Addition on the Sliding Wear Resistance and the Cavitation Erosion Resistance of Fe-base Hardfacing Alloy (Mn 첨가가 경면처리용 Fe계 신합금의 캐비테이션 에로젼과 슬라이딩 마모저항성에 미치는 영향)

  • Kim, Yoon-Kap;Oh, Young-Min;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.12 no.7
    • /
    • pp.550-554
    • /
    • 2002
  • The effect of Mn on cavitation erosion resistance and the sliding wear resistance of Fe-base hardfacing NewAlloy was investigated. Mn is known to decrease stacking fault energy and enhance the formation of $\varepsilon$-martensite. Cavitation erosion resistance for 50 hours and sliding wear resistance for 100 cycles were evaluated by weight loss. Fe-base hardfacing NewAlloy showed more excellent cavitation erosion resistance than Mn-added NewAlloys. $\Upsilon-\alpha$' phase transformation that can enhance erosion resistance by matrix hardening occurred in every specimens. But, only in Mn free Fe-base hardfacing NewAlloy, the hardened matrix could repress the propagation of cracks that was initialed at the matrix-carbides interfaces more effectively than Mn-added NewAlloy The Mn free Fe-base hardfacing NewAlloy showed better sliding wear resistance than Mn-added alloys. Mn-addition up to 5wt.% couldn't increase the sliding wear and cavitation erosion resistance of Fe-base hardfacing alloy because it didn't make $\Upsilon\to\varepsilon$ martensite phase transformation. Therefore, it is considered that the cavitation erosion and the sliding wear resistance can be improved due to $\Upsilon\to\varepsilon$ martensite phase transformation when Mn is added more than 5wt.% in Fe-base hardfacing alloys.

The Microstructure Characteristics of Laser Remelted Cobalt-Based Hardfacing Alloys (레이저 Remelting 처리된 Co 기지 하드페이싱 합금의 미세조직 특성)

  • Han Won Jin;Kim Woo Sung
    • Laser Solutions
    • /
    • v.7 no.2
    • /
    • pp.27-38
    • /
    • 2004
  • Laser remelting of surface of cobalt-based hardfacing alloy can eliminate impurities and cracks and improve the wear resistance. In this present study, Stellite ${\sharp}6\;and\;{\sharp}21$ harfacing alloys were remelted by a 3kW CO2 laser. Hardness distribution and microstructures in the laser remelted zone was investigated. Our results showed that in proper laser parameters laser remelted surface of hardfacing alloy had more refined microstructure and more increased micro-hardness than the base material.

  • PDF

Characteristics of Microstructure of Hardfacing Layer of Stellite 6 with Mo Addition (몰리브덴을 첨가하여 PTAW법으로 육성된 Stellite 6합금의 미세조직 특성평가)

  • 신종철;김재수;이덕열;양재웅;윤진국;노대호;이종권
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.4
    • /
    • pp.241-248
    • /
    • 2002
  • Hardfacing layers of Stellite 6 alloy with different molybdenum content are deposited on AISI 1045 carbon steel using plasma transferred arc welding (PTAW). The properties of the hardfacing layer are investigated in order to clarify the effect of molybdenum addition to the cobalt-base alloy. With an increase in molybdenum contents, the size of Cr-rich carbides in the interdendritic region is abruptly refined, but volume fraction of the carbide slightly increases. Also, with an increase of Mo, $M_{6}$ C type carbides are formed instead of Cr-rich $M_{7}$ $C_{3}$ type carbided, and this microstructural change enhanced the mechanical properties of Stellite 6 alloy.

Effect of dilution on micro hardness of Ni-Cr-B-Si alloy hardfaced on austenitic stainless steel plate for sodium-cooled fast reactor applications

  • Balaguru, S.;Murali, Vela;Chellapandi, P.;Gupta, Manoj
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.589-596
    • /
    • 2020
  • Many components in the assembly section of Sodium-cooled Fast Reactor are made of good corrosionresistant 316 LN Stainless Steel material. To avoid self-welding of the components with the coolant sodium at elevated temperature, hardfacing is inevitable. Ni-based colmonoy-5 is used for hardfacing due to its lower dose rate by Plasma Transferred Arc process due to its low dilution. Since Ni-Cr-B-Si alloy becomes very fluidic while depositing, the major height of the weld overlay rests inside the groove. Hardfacing is also done over the plain surface where grooving is not possible. Therefore, grooved and ungrooved hardfaced specimens were prepared at different travel speeds. Fe content at every 100 ㎛ of the weld overlay was studied by Energy Dispersive Spectroscopy and also the micro hardness was determined at those locations. A correlation between iron dilution from the base metal and the micro hardness was established. Therefore, if the Fe content of the weld overlay is known, the hardness at that location can be obtained using the correlation and vice-versa. A new correlation between micro hardness and dilution coefficient is obtained at different locations. A comparative study between those specimens is carried out to recommend the optimum travel speed for lower dilution.

The Sliding Wear behavior of Fe-Cr-C-Si Alloy in Pressurized Water (Fe-Cr-C-Si 계 경면처리 합금의 고압ㆍ수중 마모거동)

  • Lee, Kwon-yeong;Lee, Min-Woo;Oh, Young-Min;;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.13 no.4
    • /
    • pp.224-227
    • /
    • 2003
  • The sliding wear behavior of a Fe-base hardfacing alloy was investigated in the temperature range of $25∼250^{\circ}C$ under a contact stress of 15 ksi (103 MPa). The wear loss of this Alloy in pressurized water was less than that of NOREM 02. And galling did not occurred at this alloy in all temperature ranges. It was considered that the wear resistance of this Alloy was attributed to the strain-induced phase transformation from austenite to $\alpha$'martensite during sliding wear.

Effect of Ni Addition on the Wear and Corrosion Resistance of Fe-20Cr-1.7C-1Si Hardfacing Alloy

  • Lee, Sung Hoon;Kim, Ki Nam;Kim, Seon Jin
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.10
    • /
    • pp.747-753
    • /
    • 2011
  • In order to improve the corrosion resistance of Fe-20Cr-1.7C-1Si hardfacing alloy without a loss of wear resistance, the effect of Ni addition was investigated. As expected, the corrosion resistance of the alloy increased with increasing Ni concentration. The wear resistance of the alloy did not decrease, even though the hardness decreased, up to Ni concentration of 5 wt.%. This was attributed to the fact that the decrease in hardness was counterbalanced by the strain-induced martensitic transformation. The wear resistance of the alloy, however, decreased abruptly with increases of the Ni concentration over 5 wt.%.

Effect of Volume Fraction of Chromium Carbide on Fracture Toughness of the Iron/Chromium Hardfacing Alloy (철/크롬 오버레이합금의 파괴인성에 미치는 크롬탄화물 양의 영향)

    • Journal of Welding and Joining
    • /
    • v.16 no.2
    • /
    • pp.64-72
    • /
    • 1998
  • This study aims a investigating the effect of volume fraction of chromium carbide phase(VFC) of hardfaced iron/chromium alloys on fracture toughness. The alloys were deposited twice on a mild steel plate using self-shielding flux cored arc welding process. In order to examine VFC effect, different VFC (0.28∼0.62) were employed by changing the Cr and C content, while the ratio of Cr/C was fixed in the range of 5.7∼6.6. Fracture toughness was constant as increasing VFC because fracture surface was developed in the eutectic phase which was growing parallel with introduced sharp notch in the hypoeutectic alloys, but fracture toughness did not decreased in spite of increasing volume fraction of coarse primary chromium carbide phase which was easily craced at the low stress because the growth direction of chromium carbide phase were more irregular as increasing VFC in the hypereutectic alloys.

  • PDF

Effect of Vanadium Addition on the Cavitation Erosion Resistance of Fe-Cr-Ni-Si-C Hardfacing Alloy (Fe-Cr-Ni-Si-C계 경면처리 합금의 Cavitaon Erosion 저항성에 미치는 Vanadium 첨가의 영향)

  • 김경오;김준기;장세기;김선진;강성군
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.5
    • /
    • pp.297-303
    • /
    • 1998
  • The influences of vanadium addition on the cavitation erosion resistance pf Fe-Cr-Ni-Si-C hardfacing alloy were investigated using a vibratory apparatus up to 30 hrs. It was shown that 1wt.%V additioned alloy improved the resistance to cavitation damage. However, further increase in V content up to 2wt.% reduced the cavitation erosion resistance. It was considered that the addition of V developed the cavitation erosion resistance by reducing the stacking fault energy of Fe-Cr-Ni-Si-C alloy. However, the further increase in V content seemed to reduce the cavitation erosion resistance by increasing the matrix/carbide interfacial area, which was the preferential sites of the cavitation damage.

  • PDF

Sliding Wear Behavior of Fe-Base Norem 02 Hardfacing Alloy in Pressurized Water (Fe계 Norem 02 경면처리 합금의 고압.수중 마모거동)

  • Lee, Kwon-Yeong;Oh, Young-Min;Lee, Min-Woo;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.12 no.8
    • /
    • pp.608-612
    • /
    • 2002
  • The sliding wear behavior of an iron-base NOREM 02 hardfacing alloy was investigated in the temperature range of $25~250^{\circ}C$ under a contact stress of 103MPa (15ksi). With increasing temperature, the wear loss of Norem 02 in water increased slightly up to $180^{\circ}C$ at which Norem 02 showed the wear loss of 2.1mg. The wear resistance of Norem 02 resulted from the surface hardening due to the strain-induced phase transformation from austenite to $\alpha$'martensite during sliding wear. The wear loss of Norem 02 was smaller in water compared to air at same temperature because the water could be served as a sort of lubricant. The wear mode of NOREM 02 changed abruptly to severe adhesive wear at $190^{\circ}C$ and galling occurred above $200^{\circ}C$. It was caused that the strain- induced phase transformation took place below $180^{\circ}C$ while not above $190^{\circ}C$. Therefore, Norem 02 was considered to be inadequate at high temperature service area.