• Title/Summary/Keyword: Harmonic distortion

Search Result 732, Processing Time 0.031 seconds

A study On the Switching Technique of Boost Converter for Harmonic Reduction (부스트컨버터의 고조파저감을 위한 스위칭 기법에 관한 연구)

  • Shon, Jin-Geun;Chu, Sun-Nam;Kim, Young-Hyuk;Lee, Sang-Cheol;Lee, Bok-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07e
    • /
    • pp.74-78
    • /
    • 2000
  • In this paper a switching control circuit for shaping the line current and reducing the total harmonics distortion in the boost converter is presented. To solve the problems of performance degradation due to pulse waveform in the input current, the boost converter in which the harmonic distortion in the input current is reduced using a 3th harmonic-injected PWM is proposed. Finally, Simulation and experimental results of boost converter with 5[kHz] switching frequency are presented and correction of power factor and reduction of total harmonic distortion was established.

  • PDF

Improved Reactive Power Sharing and Harmonic Voltage Compensation in Islanded Microgrids Using Resistive-Capacitive Virtual Impedance

  • Pham, Minh-Duc;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1575-1581
    • /
    • 2019
  • Due to the mismatched line impedance among distributed generation units (DGs) and uncontrolled harmonic current, the droop controller has a number of problems such as inaccurate reactive power sharing and voltage distortion at the point of common coupling (PCC). To solve these problems, this paper proposes a resistive-capacitive virtual impedance control method. The proposed control method modifies the DG output impedance at the fundamental and harmonic frequencies to compensate the mismatched line impedance among DGs and to regulate the harmonic current. Finally, reactive power sharing is accurately achieved, and the PCC voltage distortion is compensated. In addition, adaptively controlling the virtual impedance guarantees compensation performance in spite of load changes. The effectiveness of the proposed control method was verified by experimental results.

Study on the Influence of Grid Voltage Quality on SVG and the Suppression

  • Yi, Guiping;Hu, Renjie
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.2
    • /
    • pp.155-161
    • /
    • 2014
  • Industrial Static Var Generator (SVG) is typically applied at or near the load center to mitigate voltage fluctuation, flicker, phase unbalance, non-sine distortion or other load-related disturbance. Special attention is paid to the influence of grid voltage quality on SVG current, the non-sine distortion and unbalance of grid voltage causes not only the AC current distortion and unbalance but also the DC voltage fluctuation. In order to let the inverter voltage contain the fundamental negative sequence and harmonic component corresponding to the grid voltage, a new dual-loop control scheme is proposed to suppress the influence in this paper. The harmonic and negative sequence voltage decomposition algorithm and DC voltage control are also introduced. All these analyses can guide the practical applications. The simulation results verify the feasibility and effectiveness of the present control strategy and analyses.

A Study on the Improved of the Harmonic Distortion of the Operational Amplifier (연산증폭기의 고조파 왜곡 개선에 관한 연구)

  • 정종혁;양규직
    • Journal of the Korean Institute of Navigation
    • /
    • v.20 no.3
    • /
    • pp.117-126
    • /
    • 1996
  • Generally, the distortion of the negative feedback amplifier is reduced by a factor equal to the return difference (1+${\beta}_1A_1$), but the proposed feedforward amplifier is reduced by a factor equal to the square of the return difference (1+${\beta}_1A_1$). In this paper, a feedforward amplifier with error correction is designed and implemented. So as to evaluate the characteristics of the harmonic distortion that the inverting feedforward amplifier is compared with that of the reference amplifier without feedforward error correction. It is confirmed that the proposed method should be able to reduce much greater than compared with a conventional negative feedback amplifier. Therefore it should be noted that the proposed feedforward amplifier network is also acceptable for wide-band amplifiers and the network which is demanded to improve the harmonic distortion.

  • PDF

Even Harmonic Analysis of Series Arc-fault Current Using BPF of GIC Application in Computer (GIC 적용 대역통과필터를 이용한 컴퓨터 부하의 직렬 아크고장 전류 우수고조파 분석)

  • Ko, Won-Sik;Moon, Won-Sik;Bang, Sun-Bae;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1554-1560
    • /
    • 2012
  • In this paper, the even harmonic current(2nd, 4th, 6th, 8th) of the arc fault current and normal current were measured in computer load and analyzed. The BPF with GIC was developed to detection of harmonic, the exact center frequency and a high degree of sharpness could be easily obtained. The total even harmonic distortion due to series arc fault in computer load was 31.2%, this value was increased 3.9 times better than the total even harmonic distortion of normal current. The results of analysis of arc fault current RMS variation rate and Peak variation rate per half-cycle, The RMS average variation rate are as follows ; the 2nd harmonic was 0.24, the 4th harmonic was 0.15, the 6th harmonic was 0.19, the 8th harmonic was 0.25, respectively. The Peak average variation rate are as follows ; the 2nd harmonic was 0.19, the 4th harmonic was 0.12, the 6th harmonic was 0.13, the 8th harmonic was 0.15, respectively. The results of this analysis utilize data to detect of series arc fault on wiring of computer load.

A Novel Random PWM Technique with a Constant Switching Frequency Utilizing an Offset Voltage (옵셋 전압을 이용한 일정 스위칭 주파수의 Random PWM 기법)

  • Kim, Do-Kyeom;Kim, Sang-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.1
    • /
    • pp.67-74
    • /
    • 2017
  • This study proposes a novel random pulse-width modulation (PWM) technique with a constant switching frequency utilizing a random offset voltage. The proposed PWM technique spreads switching harmonics by varying the position of an active voltage vector without a switching frequency variation. The implementation of the proposed PWM technique is simple because it does not require additional hardware and complex algorithm. The proposed random PWM technique is compared with the conventional PWM technique on the factors of harmonic spectrum, total harmonic distortion, and harmonic spread factor to confirm the harmonic spread effect. The validity of the proposed method is verified by simulations and experiments on a three-phase inverter drive system.

Generalized Selective Harmonic Elimination Modulation for Transistor-Clamped H-Bridge Multilevel Inverter

  • Halim, Wahidah Abd.;Rahim, Nasrudin Abd.;Azri, Maaspaliza
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.964-973
    • /
    • 2015
  • This paper presents a simple approach for the selective harmonic elimination (SHE) of multilevel inverter based on the transistor-clamped H-bridge (TCHB) family. The SHE modulation is derived from the sinusoidal voltage-angle equal criteria corresponding to the optimized switching angles. The switching angles are computed offline by solving transcendental non-linear equations characterizing the harmonic contents using the Newton-Raphson method to produce an optimum stepped output. Simulation and experimental tests are conducted for verification of the analytical solutions. An Altera DE2 field-programmable gate array (FPGA) board is used as the digital controller device in order to verify the proposed SHE modulation in real-time applications. An analysis of the voltage total harmonic distortion (THD) has been obtained for multiple output voltage cases. In terms of the THD, the results showed that the higher the number of output levels, the lower the THD due to an increase number of harmonic orders being eliminated.

Level Number Effect on Performance of a Novel Series Active Power Filter Based on Multilevel Inverter

  • Karaarslan, Korhan;Arifoglu, Birol;Beser, Ersoy;Camur, Sabri
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.711-721
    • /
    • 2018
  • This paper presents a single-phase asymmetric half-bridge cascaded multilevel inverter based series active power filter (SAPF) for harmonic voltage compensation. The effect of level number on performance of the proposed SAPF is examined in terms of total harmonic distortion (THD) and system efficiency. Besides, the relationship between the level number and the number of switching device are compared with the other multilevel inverter topologies used in APF applications. The paper is also aimed to demonstrate the capability of the SAPF for compensating harmonic voltages alone, without using a passive power filter (PPF). To obtain the required output voltage, a new switching algorithm is developed. The proposed SAPF with levels of 7, 15 and 31 is used in both simulation and experimental studies and the harmonic voltages of the load connected to the point of common coupling (PCC) is compensated under two different loading conditions. Furthermore, very high system efficiency values such as 98.74% and 96.84% are measured in the experimental studies and all THD values are brought into compliance with the IEEE-519 Standard. As a result, by increasing the level number of the inverter, lower THD values can be obtained even under high harmonic distortion levels while system efficiency almost remains the same.

Influence of laser diode structure on harmonic and intermodulation distortion characteristics (Laser diode 의 구조가 광출력의 비선형적 특성에 미치는 영향 해석)

  • 김동욱
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1999.08a
    • /
    • pp.222-223
    • /
    • 1999
  • The structural dependence of harmonic and intermodulation distortion characteristics in 1.55${\mu}{\textrm}{m}$ DFB-LCD were investigated. The linearity of 1.55${\mu}{\textrm}{m}$ DFB-LD was greatly improved by employing a partially corrugated structure.

  • PDF