• Title/Summary/Keyword: Heat Input

Search Result 1,101, Processing Time 0.035 seconds

A Study on the Limitation and Improvement of Simple Window Model applied to EnergyPlus (EnergyPlus에 적용된 Simple Window Model의 한계와 개선에 관한 연구)

  • Kim, Tae Ho;Ko, Sung Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.10
    • /
    • pp.515-529
    • /
    • 2017
  • EnergyPlus, which is widely used in various fields, provides Simple Window Model, a window model that can be used practically. However, the results of building load using the model are different from those of the standard model. The main cause of the deviation by Simple Window Model was analyzed to be due to the assumption that all windows were considered as single layer. The purpose of this study is to propose a window model that improves the cause of deviation by Simple Window Model and can be easily calculated from the algebraic relations. The proposed window model solved the heat balance equation algebraically by using seven window characteristic coefficients. The coefficient relationships consisted of the heat transmission coefficient and solar heat gain coefficient as input parameters make practical use and calculation possible. As a result of comparing the deviation between each window model by implementing the dynamic analysis method, the proposed window model showed that the deviation of the total heating/cooling energy consumption was reduced to 1/3 compared to Simple Window Model for one year. Although the maximum energy consumption did not show any significant improvement, the indoor temperature evaluation showed significantly reduced deviation.

Numerical analysis of induction heating for the application of line heating (선상 가열을 위한 고주파 유도 가열의 수치 해석)

  • Jung-Gyu Kang;Jang-Hyun Lee;Jong-Gye Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.3
    • /
    • pp.110-121
    • /
    • 2000
  • Gas heating, high frequency induction heating and laser heating can be used as the heat-source of line heating. Most of shipyards have been using the gas heating method for line heating. It is difficult to control the residual deformation of gas heating. High frequency induction heating is more feasible for the automation of line heating rather than the gas heating method since it is easy to control the magnitude of heat input. In this study, a numerical model of high frequency induction heating process is proposed for the application of the line heating. The simulation process of the induction heating is composed of the electromagnetic analysis, the heat transfer analysis, and the thermal deformation analysis.

  • PDF

The optimal array of various heat-generating heaters located on one wall of a vertical open top cavity (상부가 개방된 수직 캐비티내의 한쪽면에 배열된 다양한 발열조건을 갖는 발열체의 최적배열)

  • Riu, Kap-Jong;Choo, Hong-Lock;Choi, Byung-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.15-23
    • /
    • 1997
  • An experimental investigation of two-dimensional steady natural convection cooling in a vertical open top cavity with conducting side walls of finite thickness is presented. The various heat-generating discrete heaters are located on one vertical wall of the cavity. When each heater dissipates different amount of power, the purpose of the work is to obtain the optimal array condition of the heaters. The four cases of non-uniform heating conditions are considered. The temperature fields in the cavity were visualized by the interferometer and local temperatures of the vertical wall were measured by thermocouples. The heaters were arranged in two configurations: flush-mounted on a vertical wall or protruding from the wall about 4.5 mm. The vertical wall was constructed out of copper or epoxy-resin sheet. Experiments have been conducted for air with constant Prandtl number(Pr=0.7), the aspect ratio of 4.6, 7.5, 9.5, power input in the range of 0.9 W ~ 4.2 W. For the enhancement of the cooling effectiveness, the upper and lower of vertical wall would give the better position for the heaters of higher heat flux.

The Application of Narrow-Gap Welding Process for SA 106 Gr.C in Nuclear Power Plant (원전 배관용 SA 106 Gr.C의 협개자동용접 적용에 관한 연구)

  • Woo, Seung-Wan;Kwon, Jae-Do;Lee, Choon-Yeol;Kang, Suk-Chull;Shin, Ho-Sang
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.96-101
    • /
    • 2004
  • Conventionally, SMAW process was applied to join pipes of RCL, which caused lot of loss in time and cost due to excessive heat input and defects in joining section. Recently, narrow-gap welding(NGW) process was introduced to overcome the disadvantages of SMAW. However, the application of NGW to nuclear power plant is not yet common because safety of NGW process is not proven. In present paper, the welded coupons are made of carbon steel. They are manufactured under different processes; general welding(GW), post-weld heat treatment(PWHT) after GW, repair welding after GW and PWHT with repair welding after GW in carbon steel. Performed are various mechanical tests investigation of microstructure, hardness test, tensile test at room and high temperature, bending test, impact test and J-R test. It is verified that the mechanical properties of carbon steel are greatly changed after repair welding process due to applied heat flux, and that the effect of PWHT is beneficial.

  • PDF

Investigation into effect of cutting angle on the thermal characteristics in the linear heat cutting of EPS foam (EPS foam의 선형 열선 절단시 절단 경사각의 영향에 관한 연구)

  • 안동규;이상호;양동열;윤석환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.947-951
    • /
    • 2002
  • During the hotwire cutting of EPS foam sheet, the dimensional accuracy and part quality of the cut par are highly dependent upon the thermal field in the EPS. The thermal field is determined by operating parameters such as heat input, cutting speed and cutting angle. The objective of this study is to investigate into the influence of cutting angle on the kerfwidth and part quality of the cut part in hotwire cutting of EPS foam using the experiments and the numerical analysis in the case of a single sloped cutting. In order to estimate an accurate temperature field, the transient thermal analysis using a moving coordinate system and the sloped heat flux model is carried out. From the results of the experiments and the analysis, it has been found that the effect of cutting angle on the kerfwidth and the melted area at the edge are 0.1 mm and 0.11 m$m^2$ respectively. The results of the experiments show that the surface roughness is not appreciably influenced by the cutting angle.

  • PDF

Welding Characteristics of Lap-Joint Hastelloy C-276 Sheet Metal Using Nd:YAG Laser (Nd:YAG 레이저를 이용한 하스텔로이 박판의 겹치기 이음 용접 특성)

  • Kim, Chan Kyu;Jung, Yoon Gyo;Cho, Young Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.8
    • /
    • pp.681-685
    • /
    • 2015
  • Hastelloy C-276 composed of Cr, Mo, and Ni is a versatile, corrosion-resistant alloy with numerous industrial applications including its use in nuclear reactors, general chemical plants, and as a superconducting base material. Of especial significance, it can be used as a thin-sheet type whereby lap-joint welding is occasionally necessary. The main welding problems for thin-sheet metals are deformation and burn-through from an excessive heat input. Laser welding can minimize these problems because it has a high energy density and low heat effect on the base material. In this study, the laser-welding characteristics of lap-joint Hastelloy C-276 sheet metal were determined. The criteria of the laser-welding variables were chosen using a heat-conduction analysis, and the optimal welding parameters were selected by experimenting with an Nd:YAG laser.

Development of Large Rotor Shaft for Marine Turbo Charger Using Friction Welding with Dissimilar Materials (마찰용접을 이용한 대형선박 터보챠저용 이종 로타샤프트 개발)

  • Moon, Kwang-Ill;Jeon, Jong-Won;Jeong, Ho-Seung;Cho, Jong-Rae;Choi, Sung-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.4
    • /
    • pp.257-264
    • /
    • 2016
  • Solid state joining techniques are increasingly applied in a wide range of industrial applications. Friction welding is a solid state welding technique that is used to join similar or dissimilar materials. In this study, friction welding was applied to rotor shaft composed of a disk and a shaft. The disk and shaft were manufactured by hot forging and rolling, respectively. The aim of the study was to predict the structural characteristics during hot forging and friction welding process for rotor shaft of turbo charger. The structural characteristics were determined by heat input and heat affected zone (HAZ) during a short cycle time. Thus, transient FE analysis for hot forging and friction welding was based on heat transfer. The results were used to predict structural characteristics during hot forging and friction welding processes. The prototype of rotor shaft was manufactured by the result-based process parameters.

STUDY ON THE EFFECT OF RESIDUAL STRESS ON THE EXTERNALLY LOADED WELDED STRUCTURE

  • Rajesh S.R.;Bang Han Sur;Joo Sung Min;Kim In Sik
    • Proceedings of the KWS Conference
    • /
    • v.43
    • /
    • pp.58-60
    • /
    • 2004
  • In the field of welding the behavior of a welded structure under consideration may be predicted via heat transfer and residual stress analysis. In order to facilitate the industrial applications of welding, numerical modeling of heat transfer and residual stress in weldment has been carried out applying Finite Element Method (FEM) and the analysis with the external load including this residual stress due to welding has been done. The present work includes the specialized finite element codes for the calculation of nonlinear heat transfer details and residual stress redistributed along with the external load in the welded structures. A basic interface, which allows models, built in commercial preprocessing package access to the data necessary to build standard input decks for these specialized FEM codes, which are not supported by commercial package. The results from the FEM codes are imported back into commercial package for visualization. In addition the residual stress values are exported to commercial package (such as ANSYS, PATRAN etc.) for further analysis with the external loads, which make the FEM codes fully applicable to the industrial purpose.

  • PDF

An Experimental Study on the Characteristics of Moxa Combustion in the Moxa Cone size - On the Pattern of Combustion temperature - (애주(艾炷)의 형태별(形態別) 연소(燃燒) 특성(特性)에 대한 연구(?究) - 연소온도(燃燒溫度)의 유형(類型)을 중심(中心)으로 -)

  • Park, Young-Bae;Kang, Sung-Keel;Kim, Chang-Hwan;Koh, Hyung-Kyun;Oh, Hwan-Sup;Huh, Wung
    • The Journal of Korean Medicine
    • /
    • v.16 no.1 s.29
    • /
    • pp.370-378
    • /
    • 1995
  • In order to consider the clinical efficacy of moxa combustion, understand the quality and quantity of heat stimulation and get the basic data for the development of electric moxibustion apparatus, the pattern of combustion temperature was measured by size of moxa(small, medium, large and maximum size). The results were as follows. 1. The pattern of combustion temperature by moxa burning was classified into input period, consisting of preheating and heating periods, and output period, consisting of heat retaining and cooling periods, in all experimental groups. But it was difficult to observe the preheating period in small sized moxa. 2. It was inclined that the more moxa size was large, the more the heating and heat retaining periods were long and the maximum temperature was high. The characteristics of moxa combustion is primarily by the rate of combustion temperature, gradient temperature and duration of combustion, and their correlation among these factors and their clinical effects in practice.

  • PDF

A Study on the Multi-level Optimization Method for Heat Source System Design (다단계 최적화 수법을 이용한 열원 설비 설계법에 관한 연구)

  • Yu, Min-Gyung;Nam, Yujin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.7
    • /
    • pp.299-304
    • /
    • 2016
  • In recent years, heat source systems which have a principal effect on the performance of buildings are difficult to design optimally as a great number of design factors and constraints in large and complicated buildings need to be considered. On the other hand, it is necessary to design an optimum system combination and operation planning for energy efficiency considering Life Cycle Cost (LCC). This study suggests a multi-level and multi-objective optimization method to minimize both LCC and investment cost using a genetic algorithm targeting an office building which requires a large cooling load. The optimum method uses a two stage process to derive the system combination and the operation schedule by utilizing the input data of cooling and heating load profile and system performance characteristics calculated by dynamic energy simulation. The results were assessed by Pareto analysis and a number of Pareto optimal solutions were determined. Moreover, it was confirmed that the derived operation schedule was useful for operating the heat source systems efficiently against the building energy requirements. Consequently, the proposed optimization method is determined by a valid way if the design process is difficult to optimize.