• Title/Summary/Keyword: Heat Input

Search Result 1,100, Processing Time 0.029 seconds

Performance Analysis of a 5 RT Air-Cooled $NH_3-H_2O$ Absorption Chiller with the Variations of Heat Input and Ambient Temperature (5 RT 공랭형 $NH_3-H_2O$ 흡수식 냉동기의 발생기 입력 열량과 외기온도 변화에 따른 성능분석)

  • 윤희정;김성수;강용태
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.438-443
    • /
    • 2004
  • The objective of this paper is to study the effects of the input gas flow rate and the ambient temperature variation on the absorption cycle performance. An air-cooled NH$_3$-$H_2O$ absorption chiller is tested in the present study. The nominal cooling capacity of the single effect maching is 17.6 ㎾ (5.0 USRT). The cooling capacity, coefficient of performance, burner efficiency, and each state point are measured with the variations of the heat input and the ambient temperature. It is found that the COP and cooling capacity increase with increasing the generator exit temperature up to a certain temperature and then decrease. It is also found that the COP and the cooling capacity decrease with increasing the ambient temperature. The maximum COP of 0.51 is obtained from the present experiment.

A Study the Behavior of Plastic Deformation in Weld HAZ of Mild Steel (軟鋼 熔接熱影響部의 塑性變形擧動에 關한 硏究 II)

  • 박창언;정세희
    • Journal of Welding and Joining
    • /
    • v.10 no.1
    • /
    • pp.43-51
    • /
    • 1992
  • The plastic zone formed around a notch tip is important in analyzing the fracture toughness of structures and particularly weld cracks existed in the weld HAZ (heat affected zone) which produces local plastic deformation at the crack tip. Therefore, in order to analyze the fracture toughness in weld HAZ, it is necessary to investigate the new fracture toughness parameter $K_{c}$ $^{*}$ and critical plastic strain energy $W_{p}$ $^{c}$ according to the shape and size of the plastic zone. 1) If the temperature corresponding to $K_{c}$ $^{*}$=130kg-m $m^{-3}$ 2/ is determined, transition temperature $T_{tr}$ the magnitude of plastic zone size, and heat input change depending on the fracture toughness. The blunted amounts of the parent and weld HAZ show mild linear variation until .delta.=0.4mm and then increase very steeply there after. 2) The relation between the plastic strain energy( $W^{p}$ ) and transition temperature( $T_{*}$tr) in parent metal is more sensitive than that of weld HAZ. However, the plastic strain energy depends on the transition temperature, and thus the yield stress, .sigma.$_{ys}$ becomes an important parameter for plastic strain energy. 3) The critical plastic strain energy( $W_{p}$ $^{c}$ ) absorbed by the plastic zone at the notch tip indicated in case of parent metal: 60J/mm, in case of heat input(20KJ/cm): 75J/mm, in case of heat input(30KJ/cm); 50J/mmJ/mm.

  • PDF

The Effects of Welding Conditions on the Joint Properties of the Friction Stir Welded AZ31B-H24 Mg Alloys (마찰교반용접한 AZ31B-H24 마그네슘 합금의 용접특성에 미치는 용접조건의 영향)

  • 이원배;방극생;연윤모;정승부
    • Journal of Welding and Joining
    • /
    • v.20 no.5
    • /
    • pp.87-92
    • /
    • 2002
  • Weldability of Friction Stir Welded(FSW) AZ31B-H24 Mg alloy sheet with 4m thick was evaluated by changing welding speed. The sound welding conditions mainly depended on the suffiicient welding heat input during the process. The insufficient heat input resulted in the void like defect in the weld zone. Higher welding speed caused a larger inner void or lack of bonding. The defects were distributed at the stir zone or the transition region between stir zone and thermo-mechanical affected zone (UE). The size of defects slightly increased with increasing welding speed. These defects had a great effect on the joint strength of weld zone. The weld zone was composed of stir zone, TMAZ and heat affected zone. The stir zone was cosisted of fine recrystallized structure with $5-8\mu\textrm{m}$ in the mean grain size. The hardness of weld zone was near the 60HV, which was slightly lower than that of base metal. The maximum joint strength was about 219MPa that was 75% of that of base metal and the yield strength was also lower than that of base metal partly due to the existance of defects.

Applicability Study of 2-pass Laser Welding on Galvanized Steel Sheets (아연도금강판 겹치기 용접부에 대한 2패스 레이저용접 적용성 연구)

  • Ahn, Young-Nam;Kang, Minjung;Kim, Cheolhee
    • Journal of Welding and Joining
    • /
    • v.34 no.4
    • /
    • pp.55-61
    • /
    • 2016
  • During laser overlap welding of galvanized steel sheets, explosion of weld pool by the high pressure zinc vapor induces weld defects like porosity and blowhole. In this study, laser 2-pass welding was implemented to prevent the weld defects. Through the 1st pass welding, zinc layers on the faying surfaces were removed when proper heat input was applied. Excessive heat input could result in explosion even during the 1st pass welding and insufficient heat input could not remove enough region of zinc layer for the 2nd pass welding. Coating weights of $45g/m^2$ and $60g/m^2$ were considered and for both cases sound welds without weld defects could be achieved. In spite of 2-pass welding, softening of weld and heat affected zone was not observed and Zn coating was not diluted into the weld metal.

A Study on the Optimal Control Strategy of Air-Conditioning System with Slab Thermal Storage - Results Influenced by the Choice of a Criterion Function - (슬래브축열의 최적제어방책에 관한 연구 -평가함수의 선택이 결과에 미치는 영향-)

  • Jung, Jae-Hoon;Shin, Young-Gy
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.11
    • /
    • pp.896-905
    • /
    • 2006
  • An optimal control of an air-conditioning system with slab thermal storage is investigated by making use of the Maximum Principle. An optimal heat input to a plenum chamber and an air-conditioned room is determined by minimizing a criterion function which is given as integral sum of two terms. The first term is the square of the deviation in the room air temperature from the set-point value, and the second is the absolute value of the heat input. The result indicates that it tries to keep a room air temperature in set-point value by heating as much as possible at the time of a setup of a room air temperature or just before that, in order to avoid a heat loss arising at the time of the non-air conditioning. The result is compared with that of the case when the square of the heat input is used as a criterion.

A Study on Optimization of Thermophysiological Indices for Harbor Workers in Summer: Improvement of MENEX Model's Input Data Considering the Work Environment (하계 항만열환경지수 최적화 방안연구: 항만작업환경을 반영한 MENEX모델의 입력변수 개선)

  • Yun, Jinah;Hwang, Mi-Kyoung;Kim, Yoo-Keun
    • Journal of Environmental Science International
    • /
    • v.25 no.7
    • /
    • pp.951-961
    • /
    • 2016
  • To prevent increasing instances of heat-related illnesses due to heat waves generated by climate change, a customized thermal environment index should be developed for outdoor workers. In this study, we conducted sensitivity analysis of the Masan harbor during a heat wave period (August 9th to 15th, 2013) using the MENEX model with metabolic rate and clothing-insulation data, in order to obtain realistic information about the thermal environment. This study shows that accurate input data are essential to gather information for thermophysiological indices (PST, DhR, and OhR). PST is sensitive to clothing insulation as a function of clothing. OhR is more sensitive to clothing insulation during the day and to the metabolic rate at night. From these results, it appears that when exposed to high-temperature thermal environments in summer, wearing highly insulated clothing and getting enough rest (to lower the metabolic rate) can aid in preventing heat-related illnesses. Moreover, in the case of high-intensity harbor work, quantification of allowed working time (OhR) during heat waves is significant for human health sciences.

Heat input effects on microstructure quenched and tempered steel ASTM A517 to stainless steel AISI 316L

  • Pezeshkian, Rouhollah Mohsen;Shafaiepour, Saiedeh
    • Journal of Welding and Joining
    • /
    • v.33 no.1
    • /
    • pp.41-48
    • /
    • 2015
  • In this study, the effect of heat input on weld metal microstructure and the effects of dissimilar weld heat affected zone in quenched and tempered ASTM A517 on the stainless steel AISI 316L is investigated through the optimization of welding parameters. For this purpose, two welding techniques are used, tungsten-conventional gas and pulsed gas with weld wire ER 309MoL with Diameter 2.4 mm. Research showed that the grain size of the heat affected zone in pulsed welding is less compared with conventional welding; weld metal structure is fully austenitic, it has a finer structure in the pulsed method. Additionally, the growth of weld metal adjacent steel A517 is different from steel 316L. Further, investigation showed that the rate of dilution is less in the pulsed method and the impact energy is increased in each three regions of the weld metal and heat affected zones in the pulsed method; the fracture in the weld metal and heat affected zone of steel 316L is quite soft and it is semi-crispy in the heat affected zone of steel A517.

Effects of Heat Inputs on Phase Transformation and Resistance to Intergranular Corrosion of F316 Austenitic Stainless Steel (F316 오스테나이트 스테인리스강의 상변태 및 입계부식저항성에 미치는 입열의 영향)

  • Jeong, Gyue-Seog;Lee, In-Sung;Kim, Soon-Tae
    • Corrosion Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.146-155
    • /
    • 2020
  • To elucidate the effect of heat inputs on phase transformation and resistance to intergranular corrosion of F316 austenitic stainless steel (ASS), thermodynamic calculations of each phase and time-temperature-transformation diagram were conducted using JMaPro simulation software, oxalic acid etch test, double-loop electrochemical potentiokinetic reactivation test (DL-EPR), field emission scanning electron microscopy with energy dispersive spectroscopy, and transmission electron microscopy analyses of Cr carbide (Cr23C6), austenite phase and ferrite phase. F316 ASS containing a relatively low C content of 0.043 wt% showed a slightly sensitized microstructure (acceptably dual structure) due to a small amount of Cr carbide precipitated at heat affected zone irrespective of heat inputs. Based on results of DL-EPR test, although heat input was increased, the ratio of Ir to Ia was only increased very slightly due to a slight sensitization. Therefore, heat inputs have little influences on resistance to intergranular corrosion of F316 austenitic stainless steel containing 0.043 wt% C.

Conjugated heat transfer of the simulated module on the bottom of a inclined channel (경사진 채널 밑면에 부착된 모사모듈의 복합열전달)

  • Lee, Jin-Ho;Cho, Seong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.471-476
    • /
    • 2001
  • The characteristics of conjugated heat transfer in the inclined channel was experimentally investigated. The simulated module is attached to the bottom of the inclined channel and is heated with constant heat flux. The experimental parameters of this study are input power (Q = 3, 7W), inlet air velocity ($V_{i}=0.1{\sim}0.9m/s$) and inclined channel angle (${\varphi}=0{\sim}90^{\circ}$). The results show that input power was most effective parameter on the temperature differences between module and air. As the inclined channel angle increases, the temperatures of the module are increased. And we obtained the best condition on the conductive board when ${\varphi}=0^{\circ}$.

  • PDF

Evaluation of the heat affection according to the gouging height for low alloy steel structures (가우징 높이에 따른 구조물의 열영향 평가)

  • Ha, Joon-Wook;Yang, Byong-Il;Park, Seong-Jin;Lee, Ki-Hak
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.477-482
    • /
    • 2001
  • A study was performed to determine the optimum height for an arc air gouging of temporary attachments, which were attached at the pressure vessel made of low alloy steel. Frequently, the crack occurred in the base metal by the excessive heat input during an arc air gouging process to remove the temporary attachments. A numerical analysis by 2-dimensional finite element method was performed to calculate the temperature distribution in the base metal during the removal of temporary attachments. And then the mock-up test was performed to verify the numerical results. Numerical values showed good agreement with the experimental results. These results indicated that the defects due to the excessive heat input during an arc air gouging were dependent on the height of temporary attachments remained above hie main products.

  • PDF