• 제목/요약/키워드: Heat Input Efficiency of Arc

검색결과 15건 처리시간 0.032초

아크 스폿 용접의 입열효율 계산 방법에 관한 연구 (A Study on the Calculating Method of the Heat Input Efficiency in Arcspot Welding)

  • 장경복;조상명
    • 대한기계학회논문집A
    • /
    • 제27권7호
    • /
    • pp.1065-1070
    • /
    • 2003
  • In arc spot welding process, the arc is not moving and heat input is concentrated in one spot so that the heat input efficiency of arc is higher than that of GMAW. In other words, the heat input efficiency of arc change during weld time because arc start is done in spot and weld metal is filled. Therefore, the heat input model of arc spot welding should be different from that of general GMAW. In present study, the calculating model of heat input efficiency in arc spot welding was suggested by temperature monitoring near spot in arc spot welding of copper plate. The result showed that the heat input efficiency of arc was changed three times during weld time. The accuracy of calculating method of heat input efficiency was verified by heat transfer analysis of arc spot welding process using finite element method.

플라즈마 절단공정에서의 아아크 효율과 절단폭 (Arc efficiency and kerf width in plasma arc cutting process)

  • 노태정;나석주
    • Journal of Welding and Joining
    • /
    • 제5권1호
    • /
    • pp.23-33
    • /
    • 1987
  • 플라즈마 절단은 산업계에서 널리 사용되고 있으나 공정의 해석에 대한 연구는 매우 부족하다. 본 연구에서는 알미늄판재에 나타나는 온도분포를 해석함으로써 절달폭을 이론적으로 예측하고 자 하였다. 열유동을 해석하는데 있어서, 플라즈마 아아크의 강도가 폭방향으로는 정상분포 (Gaussian distribution)을 갖고 두께방향으로는 지수함수적으로 감소한다고 가정하였다. 측정된 아아크효율을 이용한 계산결과 이론적으로 예측된 절단부의 크기 및 형상이 실험치와 매우 잘 일치하였으며, 따라서 제안된 해석방법은 플라즈마 절달공정의 해석에 유용하게 적용될 수 있 었다.

  • PDF

유한요소해석을 이용한 채널 I 형 잠호 맞대기 용접부의 변형 및 잔류 응력 예측에 관한 연구 (A Study on the Prediction of Welding Distortion and Residual Stress for Channel I Butt SA Weldment Using FE Analysis)

  • 신대희;신상범;이주성
    • 대한조선학회논문집
    • /
    • 제44권6호
    • /
    • pp.598-604
    • /
    • 2007
  • The purpose of this study is to establish the predictive method of welding distortion and residual stress for the channel I butt SA (submerged arc) weldment using FEA. In order to do it, the heat input model for the weldment was defined as the combined heat source with the surface heat flux of gaussian distribution and volumetric heat source uniformly distributed within weld groove by comparing the shapes of molten pool and temperature distribution obtained by FEA with those of experiments. The arc efficiency of SA welding for two-dimensional FE analysis was evaluated as 0.85. The welding distortion and residual stress of the weldment obtained by FEA and heat input model proposed have a good agreement with those obtained by experiment. Based on the results, it was suggested that the proper heat input model should be required to evaluate the welding distortion for weldment.

가변 극성 알루미늄 아크 용접의 이론적 배경 고찰 (Theoretical background discussion on variable polarity arc welding of aluminum)

  • 조정호;이중재;배승환;이용기;박경배;김용준;이준경
    • Journal of Welding and Joining
    • /
    • 제33권2호
    • /
    • pp.14-17
    • /
    • 2015
  • Cleaning effect is well known mechanism of oxide layer removal in DCEP polarity. It is also known that DCEN has higher heat input efficiency than DCEP in GTAW process. Based on these two renowned arc theories, conventional variable polarity arc for aluminum welding was set up to have minimum DCEP and maximum DCEN duty ratio to achieve the highest heat input efficiency and weldability increase. However, recent several variable polarity GTA research papers reported unexpected result of proportional relationship between DCEP duty ratio and heat input. The authors also observed the same result then suggested combination of tunneling effect and random walk of cathode spot to fill up the gap between experiment and conventional arc theory. In this research, suggested combinational work of tunneling effect and rapid cathode spot changing is applied to another unexpected phenomena of variable polarity aluminum arc welding. From previous research, it is reported that wider oxide removal range, narrower bead width and shallower penetration depth are observed in thin oxide layered aluminum compared to the case of thick oxide. This result was reported for the first time and it was hard to explain the reason at that time therefore the inference by the authors was hardly acceptable. However, the suggested combinational theory successfully explains the result of the previous report in logical way.

자동 리프팅 마그넷 유도코아자력절연부의 이종재 아크용접의 최적화 (A Study on Development of Dissimilar Welding Optimization Technique for Auto-Lifting Magnet)

  • 오세규;김일석;권상우;이학준
    • 한국해양공학회지
    • /
    • 제13권2호통권32호
    • /
    • pp.83-89
    • /
    • 1999
  • In this paper an experimental study on the development of the shielded metal are welding(SMAW) optimization technique for the dissimilar materials SS41 and STS304 of Auto-Lifting Magnet core plate was carried out. It was confirmed that the optimum welding heat input range was 37.5 to 45 kj/cm by considering on the strength and fatigue life of the welded joints more than 100% joint efficiency. And the quantitative relationship empirical wquation between the strength toughness adn fatigue life and the weld heat input was obtained.

  • PDF

가변 극성 아크의 알루미늄 용접성 향상에 관한 연구 (Weldability Increase of Aluminum by Variable Polarity Arc)

  • 조정호
    • Journal of Welding and Joining
    • /
    • 제32권1호
    • /
    • pp.108-111
    • /
    • 2014
  • Low arc weldability of aluminum alloy is enhanced by applying variable polarity TIG and the result is theoretically investigated to figure out the mechanism. Conventionally, it is well known fact that DCEP (reverse polarity) arc is effective on aluminum welding. The reason is due to oxide layer removal by plasma ion bombardment and therefore it is named as cleaning effect. Another fact of polarity characteristic is that DCEN shows higher heat input efficiency therefore conventional variable polarity arc used to apply DCEP portion as small as possible. However, higher DCEP portion shows bigger weldment in this research and it is explained by adopting a theory of arc concentration on oxide layer with tunneling effect which was not clearly mentioned before in several variable polarity TIG welding research. Disagreement between variable polarity TIG welding result and conventional arc polarity theory is rationally explained for the first time with help of electron emission theory.

유한요소해석을 이용한 Channel I butt SA 용접부 변형 해석에 관한 연구 (A Study on Welding Distortion of Channel I Butt SA Weld using FE Analysis)

  • 신대희;신상범;이주성
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.189-192
    • /
    • 2006
  • The purpose of this study is to evaluate the welding distortion at the channel I butt SA weldment. In order to do it, the heat input model for the weldment was defined as combined heat source with the surface heat flux of gaussian mode and volume heat source uniformly distributed within weld groove on the basis of comparing the shapes of molten pool and temperature distribution obtained by FEA and experiment. The arc efficiency of SA welding for 2 dimensional FE analysis was determined as 0.85. The results of welding distortions at the weldment obtained by FEA and heat input conditions proposed have a good agreement with those obtained by experiment. Based on the results, it was suggested that the proper heat input model should be required to evaluate the welding distortion for weldment.

  • PDF

國산構造용 鋼板 의 水中熔接性 과 熔接强度 特性 (Weldability and Weld Strength of Underwater Welds of Domestic Structural Steel Plates)

  • 오세규;남기우
    • 대한기계학회논문집
    • /
    • 제7권3호
    • /
    • pp.263-269
    • /
    • 1983
  • Underwater welding by a gravity arc welding process was investigated by using six types of coated electrodes and SM41A steel plates of 10 mm thickness as base metal and it was ascertained that this process may be put to practical use. Main results obtained are summarized as follows: 1. Angle of electrode affects no influence on bead appearance and the proper range of welding current and diameter of electrode for the high titanium oxide type is relatively wider than that for the ilmenite type. And the lime titania type, high titanium oxide type and ilmenite type of domestic coated arc welding electrodes of .phi.4 mm could attain the soundest underwater welded joints which contain no welding imperfection. 2. According to macro-structure, micro-structure and hardness distribution inspectionson underwater welded joint, the area between the HAZ and the surface of the weld in neighbourhood of the bond has the maximum hardness value. The structure of these parts is martensite and bainite. Other parts contain mocro-ferrite, micro-pearlite structure, which contain soundness of welded joint free from weld imperfection. 3. On consideration of both tensile strength of more than 100% joint efficiency and sufficient impact value, the welding condition which can get optimal welding strength is heat input of 1,400-1,500 J/mm, current of 200-215 ampere (voltage of 32-33 volts) in the case of lime titania type electrode. 4. Underwater welding strength (tensile strength, impact strength) depends on heat input (or current) quantitatively and they have the relationship of parabolic function. Each experimental equation has a high reliability and its percent of mean error is 4.14%. 5. It is suggested that the optimal design of weld strength by welding condition (current, heat input) could be utilized for a quality control of underwater welding.

조선용 강재의 맞대기 이음에서 팁회전 아크 용접의 공정 변수에 따른 용접 특성 분석 (Weld Characteristic Analysis for Weld Process Variables of Tip-Rotating Arc Welding in Butt Joint of Shipbuilding Steels)

  • 이종중;안상현;박영환
    • 한국기계가공학회지
    • /
    • 제20권7호
    • /
    • pp.105-112
    • /
    • 2021
  • Reduction of weld distortions and increase in productivity are some of the major goals of the shipbuilding industry. To address these issues, many researchers have attempted to apply new welding processes. In the shipbuilding industry, steel is the candidate material of choice owing to its good weldability. However, conventional welding techniques are not feasible for avoiding welding problems. Tip-rotating arc welding is one of the high-efficiency welding process that has several advantages, such as high welding speed, high melting rate, low heat input, and less distortion. The present study investigates the influence of the welding variables on the weld characteristics of tip-rotating arc welding. Welding was performed using EH36 as the base metal and SM-70s as the filler metal, which are widely used in shipbuilding. Basic experiments were conducted to understand the effects of the major welding variables, such as welding and tip-rotating speeds. The distortion and mechanical properties of the optimal welding conditions were used to evaluate the tip-rotating arc welding performance. Consequently, the feasibility of the tip-rotating arc welding process for joining steel components was investigated, so that the optimized welding conditions could be applied directly to ship body welding to enhance the quality of the welded joints.