• Title/Summary/Keyword: Heat pipe cooled reactor

Search Result 10, Processing Time 0.021 seconds

Thermal-hydraulic analysis of a new conceptual heat pipe cooled small nuclear reactor system

  • Wang, Chenglong;Sun, Hao;Tang, Simiao;Tian, Wenxi;Qiu, Suizheng;Su, Guanghui
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.19-26
    • /
    • 2020
  • Small nuclear reactor features higher power capacity, longer operation life than conventional power sources. It could be an ideal alternative of existing power source applied for special equipment for terrestrial or underwater missions. In this paper, a 25kWe heat pipe cooled reactor power source applied for multiple use is preliminary designed. Based on the design, a thermal-hydraulic analysis code for heat pipe cooled reactor is developed to analyze steady and transient performance of the designed nuclear reactor. For reactor design, UN fuel with 65% enrichment and potassium heat pipes are adopted in the reactor core. Tungsten and LiH are adopted as radiation shield on both sides of the reactor core. The reactor is controlled by 6 control drums with B4C neutron absorbers. Thermoelectric generator (TEG) converts fission heat into electricity. Cooling water removes waste heat out of the reactor. The thermal-hydraulic characteristics of heat pipes are simulated using thermal resistance network method. Thermal parameters of steady and transient conditions, such as the temperature distribution of every key components are obtained. Then the postulated reactor accidents for heat pipe cooled reactor, including power variation, single heat pipe failure and cooling channel blockage, are analyzed and evaluated. Results show that all the designed parameters satisfy the safety requirements. This work could provide reference to the design and application of the heat pipe cooled nuclear power source.

Coupled irradiation-thermal-mechanical analysis of the solid-state core in a heat pipe cooled reactor

  • Ma, Yugao;Liu, Jiusong;Yu, Hongxing;Tian, Changqing;Huang, Shanfang;Deng, Jian;Chai, Xiaoming;Liu, Yu;He, Xiaoqiang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2094-2106
    • /
    • 2022
  • The solid-state core of a heat pipe cooled reactor operates at high temperatures over 1000 K with thermal and irradiation-induced expansion during burnup. The expansion changes the gap thickness between the solid components and the material properties, and may even cause the gap closure, which then significantly influences the thermal and mechanical characteristics of the reactor core. This study developed an irradiation behavior model for HPRTRAN, a heat pipe reactor system analysis code, to introduce the irradiation effects such as swelling and creep. The megawatt heat pipe reactor MegaPower was chosen as an application case. The coupled irradiation-thermal-mechanical model was developed to simulate the irradiation effects on the heat transfer and stresses of the whole reactor core. The results show that the irradiation deformation effect is significant, with the irradiation-induced strains up to 2.82% for fuel and 0.30% for monolith at the end of the reactor lifetime. The peak temperatures during the lifetime are 1027:3 K for the fuel and 956:2 K for monolith. The gap closure enhances the heat transfer but caused high stresses exceeding the yield strength in the monolith.

Preliminary design and assessment of a heat pipe residual heat removal system for the reactor driven subcritical facility

  • Zhang, Wenwen;Sun, Kaichao;Wang, Chenglong;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.3879-3891
    • /
    • 2021
  • A heat pipe residual heat removal system is proposed to be incorporated into the reactor driven subcritical (RDS) facility, which has been proposed by MIT Nuclear Reactor Laboratory for testing and demonstrating the Fluoride-salt-cooled High-temperature Reactor (FHR). It aims to reduce the risk of the system operation after the shutdown of the facility. One of the main components of the system is an air-cooled heat pipe heat exchanger. The alkali-metal high-temperature heat pipe was designed to meet the operation temperature and residual heat removal requirement of the facility. The heat pipe model developed in the previous work was adopted to simulate the designed heat pipe and assess the heat transport capability. 3D numerical simulation of the subcritical facility active zone was performed by the commercial CFD software STAR CCM + to investigate the operation characteristics of this proposed system. The thermal resistance network of the heat pipe was built and incorporated into the CFD model. The nominal condition, partial loss of air flow accident and partial heat pipe failure accident were simulated and analyzed. The results show that the residual heat removal system can provide sufficient cooling of the subcritical facility with a remarkable safety margin. The heat pipe can work under the recommended operation temperature range and the heat flux is below all thermal limits. The facility peak temperature is also lower than the safety limits.

SAFETY STUDIES ON HYDROGEN PRODUCTION SYSTEM WITH A HIGH TEMPERATURE GAS-COOLED REACTOR

  • TAKEDA TETSUAKI
    • Nuclear Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.537-556
    • /
    • 2005
  • A primary-pipe rupture accident is one of the design-basis accidents of a High-Temperature Gas-cooled Reactor (HTGR). When the primary-pipe rupture accident occurs, air is expected to enter the reactor core from the breach and oxidize in-core graphite structures. This paper describes an experiment and analysis of the air ingress phenomena and the method fur the prevention of air ingress into the reactor during the primary-pipe rupture accident. The numerical results are in good agreement with the experimental ones regarding the density of the gas mixture, the concentration of each gas species produced by the graphite oxidation reaction and the onset time of the natural circulation of air. A hydrogen production system connected to the High-Temperature Engineering Test Reactor (HTTR) Is being designed to be able to produce hydrogen by themo-chemical iodine-Sulfur process, using a nuclear heat of 10 MW supplied by the HTTR. The HTTR hydrogen production system is first connected to a nuclear reactor in the world; hence a permeation test of hydrogen isotopes through heat exchanger is carried out to obtain detailed data for safety review and development of analytical codes. This paper also describes an overview of the hydrogen permeation test and permeability of hydrogen and deuterium of Hastelloy XR.

Numerical study on conjugate heat transfer in a liquid-metal-cooled pipe based on a four-equation turbulent heat transfer model

  • Xian-Wen Li;Xing-Kang Su;Long Gu;Xiang-Yang Wang;Da-Jun Fan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1802-1813
    • /
    • 2023
  • Conjugate heat transfer between liquid metal and solid is a common phenomenon in a liquid-metal-cooled fast reactor's fuel assembly and heat exchanger, dramatically affecting the reactor's safety and economy. Therefore, comprehensively studying the sophisticated conjugate heat transfer in a liquid-metal-cooled fast reactor is profound. However, it has been evidenced that the traditional Simple Gradient Diffusion Hypothesis (SGDH), assuming a constant turbulent Prandtl number (Prt,, usually 0.85 - 1.0), is inappropriate in the Computational Fluid Dynamics (CFD) simulations of liquid metal. In recent decades, numerous studies have been performed on the four-equation model, which is expected to improve the precision of liquid metal's CFD simulations but has not been introduced into the conjugate heat transfer calculation between liquid metal and solid. Consequently, a four-equation model, consisting of the Abe k - ε turbulence model and the Manservisi k𝜃 - ε𝜃 heat transfer model, is applied to study the conjugate heat transfer concerning liquid metal in the present work. To verify the numerical validity of the four-equation model used in the conjugate heat transfer simulations, we reproduce Johnson's experiments of the liquid lead-bismuth-cooled turbulent pipe flow using the four-equation model and the traditional SGDH model. The simulation results obtained with different models are compared with the available experimental data, revealing that the relative errors of the local Nusselt number and mean heat transfer coefficient obtained with the four-equation model are considerably reduced compared with the SGDH model. Then, the thermal-hydraulic characteristics of liquid metal turbulent pipe flow obtained with the four-equation model are analyzed. Moreover, the impact of the turbulence model used in the four-equation model on overall simulation performance is investigated. At last, the effectiveness of the four-equation model in the CFD simulations of liquid sodium conjugate heat transfer is assessed. This paper mainly proves that it is feasible to use the four-equation model in the study of liquid metal conjugate heat transfer and provides a reference for the research of conjugate heat transfer in a liquid-metal-cooled fast reactor.

Investigation of the Thermal Performance of a Vertical Two-Phase Closed Thermosyphon as a Passive Cooling System for a Nuclear Reactor Spent Fuel Storage Pool

  • Kusuma, Mukhsinun Hadi;Putra, Nandy;Antariksawan, Anhar Riza;Susyadi, Susyadi;Imawan, Ficky Augusta
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.476-483
    • /
    • 2017
  • The decay heat that is produced by nuclear reactor spent fuel must be cooled in a spent fuel storage pool. A wickless heat pipe or a vertical two-phase closed thermosyphon (TPCT) is used to remove this decay heat. The objective of this research is to investigate the thermal performance of a prototype model for a large-scale vertical TPCT as a passive cooling system for a nuclear research reactor spent fuel storage pool. An experimental investigation and numerical simulation using RELAP5/MOD 3.2 were used to investigate the TPCT thermal performance. The effects of the initial pressure, filling ratio, and heat load were analyzed. Demineralized water was used as the TPCT working fluid. The cooled water was circulated in the water jacket as a cooling system. The experimental results show that the best thermal performance was obtained at a thermal resistance of $0.22^{\circ}C/W$, the lowest initial pressure, a filling ratio of 60%, and a high evaporator heat load. The simulation model that was experimentally validated showed a pattern and trend line similar to those of the experiment and can be used to predict the heat transfer phenomena of TPCT with varying inputs.

Neutronics analysis of a 200 kWe space nuclear reactor with an integrated honeycomb core design

  • Chao Chen;Huaping Mei;Meisheng He;Taosheng Li
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4743-4750
    • /
    • 2022
  • Heat pipe cooled nuclear reactor has been a very attractive technical solution to provide the power for deep space applications. In this paper, a 200 kWe space nuclear reactor power design has been proposed based on the combination of an integrated UN ceramic fuel, a heat pipe cooling system and the Stirling power generators. Neutronics and thermal analysis have been performed on the space nuclear reactor. It was found that the entire reactor core has at least 3.9 $ subcritical even under the worst-case submersion accident superimposed a single safety drum failure, and results from fuel temperature coefficient, neutron spectrum and power distribution analysis also showed that this reactor design satisfies the neutronics requirements. Thermal analysis showed that the power in the core can be successfully removed both in normal operation or under one or more heat pipes failure scenarios.

A Study on High Cycle Temperature Fluctuation Caused by Thermal Striping in a Mixing Tee Pipe (혼합배관 내의 열 경계층 이동으로 인한 고주기 온도요동에 관한 연구)

  • Kim, Seoug-B.;Park, Jong-H.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.5
    • /
    • pp.9-19
    • /
    • 2007
  • Fluid temperature fluctuations in a mixing tee pipe were numerically analyzed by LES model in order to clarify internal turbulent flows and to develope an evaluation method for high-cycle thermal fatigue. Hot and cold water with an temperature difference $40^{\circ}C$ were supplied to the mixing tee. Fluid temperature fluctuations in a mixing tee pipe is analysed by using the computational fluid dynamics code, FLUENT, Temperature fluctuations of the fluid and pipe wall measured as the velocity ratio of the flow in the branch pipe to that in the main pipe was varied from 0.05 to 5.0. The power spectrum method was used to evaluate the heat transfer coefficient. The fluid temperature characteristics were dependent on the velocity ratio, rather than the absolute value of the flow velocity. Large fluid temperature fluctuations were occurred near the mixing tee, and the fluctuation temperature frequency was random. The ratios of the measured heat transfer coefficient to that evaluated by Dittus-Boelter's empirical equation were independent of the velocity ratio, The multiplier ratios were about from 4 to 6.

Thermal study of the emergency draining tank of molten salt reactor

  • C. Peniguel
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.793-802
    • /
    • 2024
  • In the framework of the European project SAMOSAFER, this numerical study focuses on some thermal aspects of the Emergency Draining Tank (EDT) located underneath the core of a Molten Salt Reactor. In case of an emergency, this tank passively receives the liquid fuel salt and is designed to ensure a subcritical state. An important requirement is that the fuel does not overheat to maintain the EDT Hastelloy container integrity. The present EDT is based upon a group of hexagonal cooling assemblies arranged in a hexagonal grid and cooled down thanks to conduction through the inert salt layer up to an air flow in charge of removing the heat. This numerical thermal study relies on a conjugated heat transfer analysis coupling a Finite Element solid thermal code (SYRTHES) and two instances of a Finite Volume CFD codes (Code_Saturne). Calculations on an initial design suggest that a simple center airpipe flow is likely to not sufficiently cool the device. Alternative solutions have been evaluated. Introduction of fins to enhance the heat transfer do not bring a noticeable improvement regarding maximum temperature reached. However, a solution in which the central pipe air flow is replaced by several cooling channels located closer to the fuel is investigated and suggests a better cooling.

Preliminary Leak-before Break Assessment of Intermediate Heat Transport System Hot-Leg of a Prototype Generation IV Sodium-cooled Fast Reactor (소듐냉각고속로 원형로 중간열전달계통 고온배관의 파단전누설 예비평가)

  • Lee, Sa Yong;Kim, Nak Hyun;Koo, Gyeong Hoi;Kim, Sung Kyun;Kim, Yoon Jea
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.126-133
    • /
    • 2016
  • Recently, the research and development of Sodium-cooled Fast Reactors (SFRs) have made progresses. However, liquid sodium, the coolant of an SFR, is chemically unstable and sodium fire can be occurred when liquid sodium leaks from sodium pipe. To reduce the damage by the sodium fire, many fire walls and fire extinguishers are needed for SFRs. LBB concept in SFR might reduce the scale of sodium fire and decrease or eliminate fire walls and fire extinguishers. Therefore, LBB concept can contribute to improve economic efficiency and to strengthen defense-in depth safety. The LBB assessment procedure has been well established, and has been used significantly in light water reactors (LWRs). However, an LBB assessment of an SFR is more complicated because SFRs are operated in elevated temperature regions. In such a region, because creep damage may occur in a material, thereby growing defects, an LBB assessment of an SFR should consider elevated temperature effects. The procedure and method for this purpose are provided in RCC-MRx A16, which is a French code. In this study, LBB assessment was performed for PGSFR IHTS hot-leg pipe according to RCC-MRx A16 and the applicability of the code was discussed.