• Title/Summary/Keyword: Heating and Cooling Technique

Search Result 81, Processing Time 0.036 seconds

Theoretical approach on the heating and cooling system design for an effective operation of Li-ion batteries for electric vehicles (전기구동 자동차용 리튬이온 배터리의 고효율 운전을 위한 냉방 및 난방 시스템 설계에 대한 이론적 접근법)

  • Kim, Dae-Wan;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.2545-2552
    • /
    • 2014
  • This study is aiming to suggest the effective thermal management system design technologies for the high voltage and capacity battery system of the electricity driven vehicles and introduce the theoretical designing methods. In order to investigate the effective operation of the battery system for the electricity driven vehicles, the heat generation model for Li-ion battery system using the chemical reaction while charging and discharging was suggested and the thermal loads of the heat sources (air or liquid) for cooling and heating were calculated using energy balance. Especially, the design methods for the cooling and heating of the battery system for maintaining the optimum operation temperature were investigated under heating, cooling and generated heat (during charging and discharging) conditions. The battery thermal management system for the effective battery operation of the electricity driven vehicles was suggested reasonably depending on the variation of the season and operation conditions. In addition, at the same conditions under summer season, the cooling method using the liquid and active cooling technique showed a relatively high capacity, while cooling method using the passive cooling technique showed a relatively low capacity.

Distortion and transformation of high tensile strength steel plate of 50kg/mm$^{2}$grade due to line heating (50kg/mm$^{2}$급 고장력 강판의 선상가열에 따른 판상변형과 재질변화)

  • 정남호;최병길;박종은
    • Journal of Welding and Joining
    • /
    • v.3 no.1
    • /
    • pp.11-21
    • /
    • 1985
  • The line heating is a thermoplastic working technique which is used in bending work of steel plate and in correcting the distortion of welded structure. This method is considerably effective when the water-cooling is followed. In this study, an investigation was accomplished to find the effects on the change of material properties when the line heating was applied on the high tensile steel plate of 50kg/mm^2$ grade. Some steel plates were heated to various temperatures and then cooled with water or in the air. In this study, the author measured the angular distortion continuously during line heating to find out the relation between the bending efficiency and heating or water-cooling temperature. Furthermore, its material properties were examined by the V-notch Charpy impact test, the microscope observation and the Vickers hardness test. As results, the followings were clarified. (1) The amount of angular distortion increases as the heating temperature or the water-cooling temperature rises. (2) When the steel plate is heated between 700.deg. C and 900.deg. C, and then is water-cooled over 700.deg. C, some brittle structure is observed. But if the temperature of water-cooling is below 700.deg. C, no brittle one is found. (3) When the steel plate is heated over 800.deg. C and is cooled in the air, there is no unfavrable effect.

  • PDF

Prediction of Greenhouse Energy Loads using Building Energy Simulation (BES) (BES 프로그램을 이용한 국내 대표적 대형온실의 에너지 부하 예측)

  • Lee, Sung-Bok;Lee, In-Bok;Homg, Se-Woon;Seo, Il-Hwan;Bitog, P. Jessie;Kwon, Kyeong-Seok;Ha, Tae-Hwan;Han, Chang-Pyoung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.3
    • /
    • pp.113-124
    • /
    • 2012
  • Reliable estimation of energy load inside the greenhouse and the selection of cooling and heating facilities are very important preceding factors to save energy as well as initial and maintenance costs of operating a greenhouse. Recently, building energy simulation (BES) technique to simulate a model similar to the actual conditions through a variety of dynamic simulation methods, and predict and analyze the flow of energy is being actively introduced and developed. As a fundamental research to apply the BES technique which is mainly used for analysis of general buildings, to greenhouse, this research designed four types of naturally-ventilated greenhouses using one of commercial programs, TRNSYS, and then compared and analyzed their energy load properties, by applying meteorological data collected from six regions in Korea. When comparing the greenhouse load of each region depending on latitude and topographical characteristics through simulation, Chuncheon had nearly 9~49 % higher heating load per year than other regions, but its annual cooling load was the reverse to it. Except for Jeju, 1-2W type greenhouses in five regions showed about 17 % higher heating load than a widespan type greenhouse, and 1-2W type greenhouses in Chuncheon, Suwon, Cheongju, Daegu, Cheonju and Jeju had 23 %, 20 %, 17 %, 16 %, 18 % and 20 % higher cooling load respectively than a wide span-type one. Glasshouse and vinyl greenhouse showed 8~11 % and 10~12 % differences respectively in heating load, while 2~10 % and 7~10 % differences in cooling load respectively.

Analysis of Gas Cooling System for IR Window (적외선 윈도우용 가스식 냉각장치 해석 기법)

  • Hyun, Cheol-Bong;Goo, Nam-Seo;Kim, Jae-Young;Lee, Ho-Sung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.130-137
    • /
    • 2012
  • In this paper, a post-analysis of cooling system for infrared(IR) window was performed based on heating experiment of IR window system. We applied the same experimental conditions to analysis, and then validated the analysis technique by comparing numerical and experimental results. For an analysis software, we used a professional heat/fluid analysis program and the numerical and experimental results were in fairly good agreement. We investigated the effect of thermal transfer between the frame and IR window and also a cooling efficiency between fluid and structure in order to determine the proper parameters for the analysis. In this study, 100 % thermal transfer between the frame and IR window and 30 % cooling efficiency between fluid and structure have been proposed, which can be used in the future conceptual design and analysis of similar IR windows.

A Study on the Application Plan of Air-Conditioning and Renewable Complex Systems in the Small Schools. (소규모 학교의 냉난방 및 신재생에너지복합시스템 적용방안에 관한 연구)

  • Kim, Ji-Yeon;Park, Hyo-Soon;Hong, Sung-Hee;Kim, Seong-Sil;Hur, Inn-Ku;Suh, Seung-Jik
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.946-951
    • /
    • 2009
  • The research aims to study a new, optimum and renewable energy application method that can cover the minimum energy and operation costs within a range of school budgets. By deriving the optimum application method, it is expected to maximize the cooling/heating and water heating energy saving efficiencies for educational facilities. Therefore, this research carried out a study on the new/renewable energy utilization technique diffusion expansion method and the optimum method. As a result, the first optimum plan was introduced with the multi-type geothermal heat pump 174kW + solar heat collector $94\;m^2$ + highly efficient electronic cooling/heating device (EHP) 249.4kW. On the other hand, the second optimum plan was induced as the multi-type geothermal heat pump 255.2kW + highly efficient electronic cooling/heating device (EHP) 168.2kW.

  • PDF

Novel Wafer Warpage Measurement Method for 3D Stacked IC (3D 적층 IC제조를 위한 웨이퍼 휨 측정법)

  • Kim, Sungdong;Jung, Juhwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.86-90
    • /
    • 2018
  • Standards related to express the non-flatness of a wafer are reviewed and discussed, for example, bow, warp, and sori. Novel wafer warpage measurement method is proposed for 3D stacked IC application. The new way measures heat transfer from a heater to a wafer, which is a function of the contact area between these two surfaces and in turn, this contact area depends on the wafer warpage. Measurement options such as heating from room temperature and cooling from high temperature were experimentally examined. The heating method was found to be sensitive to environmental conditions. The cooling technique showed more robust and repeatable results and the further investigation for the optimal cooling condition is underway.

Improvement on the Formability of Magnesium Alloy Sheet by Heating and Cooling Method (가열냉각법에 의한 마그네슘 합금의 판재 성형성 개선)

  • Kang, D.M.;Manabe, K.
    • Journal of Power System Engineering
    • /
    • v.9 no.3
    • /
    • pp.66-70
    • /
    • 2005
  • Structural components for aerospace, electronics and automobile industry are the main applications for magnesium alloys due to their lightweight and high specific strength. The adoption of magnesium alloys in sheet forming processes is still limited, due to their low formability at room temperature caused by the hexagonal crystal structure. In this paper, the authors aim to improve the formability of AZ31 magnesium alloy. For this, experiment and finite element analysis on used warm deep drawing process with a local heating and cooling technique were done. Both die and blank holder were heated at various warm temperature while the punch was kept at room temperature by cooling water.

  • PDF

Improvement on the formability of magnesium alloy sheet by heating and cooling method(II) (가열냉각법에 의한 마그네슘합금의 판재성형성개선(II))

  • Manabe K.;Kang Dae-Min
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.385-388
    • /
    • 2005
  • The use of magnesium alloys meets the need of reducing weight of componests(especially in automotive and aerospace industry) keeping unmodified their mechanical properties. The adoption of magnesium alloys in sheet forming processes is still limited, due to their low formability at room temperature caused by the hexagonal crystal structure. In this study, the authors aim to understand the process condition which can lead to a successful improvement in the formability of a magnesium alloy(AZ31). Experiment and simulations of deep drawing were doned at various warm temperature for the blank and tool(holde and die)while the punch was kept at room temperature by cooling wale. in order to confirm that the deep drawing performance of magnesium alloy can be considerably enhanced with using the local heating and cooling technique.

  • PDF

A Study on Ventilation Effectiveness in the Non-isothermal Supply using Mixing and Displacement Ventilation Systems (비등온 급기조건에서 환기방식에 따른 환기효율 특성에 관한 연구)

  • 이재근;강태욱;윤석구;구재현;한정균;조민철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.8
    • /
    • pp.739-745
    • /
    • 2001
  • The objective of this research is to analyze the ventilation effectiveness in the non-isothermal air supply using mixing and displacement ventilation systems for indoor air quality control and management. In this study, a ventilation effectiveness is evaluated in a simplified model chamber using a tracer gas technique of $CO^2$ gas injected into a supply duct as a function of ventilation rates, supply/extract sites and cooling/heating air supply. The ventilation effectiveness decreased with increasing ventilation rate on the cooling and heating conditions. And the ventilation effectiveness of case 3 (down supply and upper extract) was better thant that of case 1(upper supply and upper extract) and case 2(upper supply and down extract) with the cooling supply conditions. but for the heating supply air conditions, the ventilation effectiveness of case 2 was better than that of case 3 and case 1.

  • PDF