• Title/Summary/Keyword: Heating and Cooling system using Geothermal

Search Result 81, Processing Time 0.041 seconds

Economic Analysis of Cooling-Heating System Using Ground Source Heat in Horticultural Greenhouse (시설원예의 지열냉·난방시스템 경제성 분석)

  • Ryoo, Yeon-Su;Joo, Hye-Jin;Kim, Jin-Wook;Park, Mi-Lan
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.6
    • /
    • pp.60-67
    • /
    • 2012
  • Government Geothermal Cooling-Heating Projects has made efforts to reduce GHG(Greenhouse Gas) emissions and to manage cost of greenhouse farm households. This study evaluated the economic benefits of heating load rate of change by comparing Geothermal Cooling-Heating System with the existing system(greenhouse diesel heating) in the Government Geothermal Cooling-Heating Projects. Economic analysis results shows that, 1) When installing the Cooling-Heating system according to the ratio of 70% heating load in policy standards, the geothermal cooling-heating system has economic efficiency with greenhouse type or scale independent because the investment cost is recovered within 7 years. And It was more economic efficiency the ratio of 50% heating load than70% heating load. 2) When installing the Cooling-Heating system according to the glass greenhouse of the ratio of 90% heating load, pay period of investment cost is recovered within 5 years. Therefore it is necessary to apply flexible heating sharing according to greenhouse type or scale.

Effect analysis of geothermal cooling and heating system (지열(수온차)냉난방 시스템 효과 분석)

  • Chung, Hoon;Ma, Bum-Gu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.365-368
    • /
    • 2008
  • This experiment is significant because we can provide information by measuring effect of energy saving for whom plan to install a geothermal heat & cooling system. The result shows geothemal system can save about 50% of energy(heating : 35%, cooling : 60%) and we verified that when using curtain can help saving $4{\sim}12%$ of energy additionally

  • PDF

Application of the Geothermal Hybrid System for Huge Size Common Structures with Heating & Cooling System (지열 Hybrid System 개발을 통한 대형 공동구조물 지열에너지 적용성 평가)

  • Park, Si-Sam;Na, Sang-Min;Park, Jong-Hun;Rhee, Keon-Joong;Kim, Tae-Won;Kim, Sung-Yub
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.588-591
    • /
    • 2009
  • Ground source heat pump system; GSHPs is close to most practical use for early stage investment cost and energy efficiency in new renewable energies, and currently considered utilizing to the heat and cooling system of a building. Particularly, the case to utilize 'Standing Column well heat source gathering method' in the open standards process to have the excellent capability of gathering geothermal source is increased. But the research for the optimal design technology and the assessment of a pollution level of the ground to utilize a single well for gathering geothermal is insignificant and the design is insufficient. The heating and cooling system and the equipment to utilize a large size residential development to have over 1000 households have not developed yet. Therefore, our company developed 'geothermal hybrid system' which can construct the heat and cooling system using geothermal energy for a large size residential development of over 1000 households and conducted the evaluation of economic feasibility. Moreover we developed automatic equipment for gathering geothermal source and PLC (Programmable logic controller) to have optimal efficiency and FCU (fan coil unit) considering the floors of large size apartments.

  • PDF

An Experimental Study on the Effects of Operating Variables on the Cooling and Heating Performance of Geothermal Heat Pump (지열 히트펌프에서 운전변수가 냉난방 성능에 미치는 영향에 대한 실험연구)

  • Chang, Keun-Sun;Kang, Hee-Jeong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.8
    • /
    • pp.562-570
    • /
    • 2011
  • In this research, an experimental study is performed to investigate the effects of system operating variables on the cooling and heating characteristics of heat pump system using geothermal heat source and carbon dioxide as a refrigerant. System variables analyzed include compressor frequency, electronic expansion valve opening, refrigerant charge, secondary fluid temperature and flow rate. Results show that optimum refrigerant charge and electronic expansion valve opening position exist at the maximum point of COP curve, and both cooling and heating capacity increase but COPs decrease with the increase of compressor frequency. The change of a secondary fluid temperature leads to variation of overheat area and enthalpy difference in the evaporator and gas cooler. which again results in considerable variations of cooling and heating capacity and COP. In the case of effects of secondary water fluid flow rate, both cooling capacity and COP increase with the increase of secondary flow in evaporator or gas cooler, whereas heating capacity and COP decrease with the increase of flow rate in gas cooler.

A Study on the Economic Analysis of Cooling-Heating System Using Ground Source Heat in a public library (공공도서관에 지열시스템 적용시 경제성에 관한 연구)

  • Choi, Chang-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.1
    • /
    • pp.56-66
    • /
    • 2012
  • This study evaluated the economic benefits by comparing Cooling-Heating System with the existing system in the public library. The building's annual energy consumption was measured by adding the figures of the absorber chillers, the air conditioners and heaters in the building. The total amount of annual energy consumption was 143.51RT in air-conditioning and 83.66RT in heating. So, We made the capacity of geothermal heat pumps three 50RTs in order to check up this system. In order to estimate each construction and equipment cost and to evaluate economical efficiency, LCC(Life Cycle Cost) method was used and the service life of the building was sixty years. The result of analysis was that the geothermal cooling-heating system was more efficient than the existing system in public library.

Effect analysis of geothermal cooling and heating system (지열냉난방 시스템의 효과 분석)

  • Kim, Byeong-Kak;Kim, Yong-Hwan;Kim, Jong-Deug
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1146_1147
    • /
    • 2009
  • This experiment is significant because we can provide information by measuring effect of energy saving for whom plan to install a geothermal heat & cooling system. The result shows geothemal system can save about 50% of energy(heating : 35%, cooling : 60%) and we verified that when using curtain can help saving 4~12% of energy additionally.

  • PDF

Application for Heating and Cooling System Using Sewage Water (100RT급 하수열원 냉난방시스템 적용)

  • Chang, Ki-Chang;Yoon, Hyung-Kee;Park, Seong-Ryong;Baik, Young-Jin;Ra, Ho-Sang;Shin, Kwang-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.215-220
    • /
    • 2006
  • Along with socioeconomic development and improving standard of living, the heat demand for heating and cooling in residential and commercial sectors is expected to expand rapidly, reaching over 43 million TOE by 2010 in Korea(about 80% increase compared with that in 1995). Since most of this heat demand is loop temperature below $60^{\circ}C$, the utilization of 'unused energy' is surely one of very effective measures to both environmental preservation and energy conservation. 'Unused energy' in this paper is implicated as 'temperature differential energy' available from treated sewage water, useful and abundant heat source for heat pump(cooler in summer and warmer in winter than outside air). An analysis was carried out to estimate the energy potential of treated sewage water for heat pump heat source. Some analysis were taken to study the characteristics of a heat pump system using the treated sewage water as heat source.

  • PDF

A Sutdy on the Apllicability of the Energy Pile System on Substation (변전소 구조물의 에너지파일 시스템 적용성 연구)

  • Lee, Daesoo;Oh, Gidae;Lee, Kangyul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.198-198
    • /
    • 2011
  • Cooling and Heating system using Geothermal energy in the country has shown rapid development in the research and business field during about 10 years. However, like other renewable energy sources, high initial construction cost is acting as an obstacle to apply widely. Therefore Energy pile system(Heat Exchanger inserted inside the structure pile) that can save about 25 % initial construction cost has been studied in European countries and recently being studied in our country. Therefore, KPECO(Korea Electric Power Corporation) is also studying energy pile system to improve cooling & heating system in substation that install about 200 pile. KPECO is aimed to make energy pile design, construction and maintenance standards because substation has good applicability. In this study, we studied to make new grout material and design program to make optimized design & counstruction method of energy pile system. And planing to peform field test for energy pile system in a 154 kV substation to obtain long-term behavior and efficiency of the system.

  • PDF

A Characteristics Simulation of Heat Pump System for Sewage Water as a Heat Source (하수열원 열펌프 시스템의 성능 시뮬레이션)

  • Park, Il-Hwan;Chang, Ki-Chang;Lee, Young-Soo;Yoon, Hyung-Kee;Baek, Young-Jeen
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.4
    • /
    • pp.280-286
    • /
    • 2008
  • In this study, characteristics simulation of heat pump system is investigated for heating and cooling using sewage water as a heat source. A simulation program for preestimate operation characteristics of heat pump system is developed. The performance of this system is resolved by several variables and the characteristics which is based on actual air and sewage temperature data. The simulation results agree well with the experimental values of COP. In the analysis of system characteristics, the COP is changed between $3\sim5$ in winter season for heating load, $4\sim6$ in summer season for cooling load. As the results of Life Cycle Cost analysis over a 15 year life cycle, the energy cost could be reduced by 250 million won if a heat pump system was used instead of a conventional boiler and an absorbtion refrigerator on the office building.

Development of a Cooling and Heating System for Greenhouse using Geothermal Energy (지열을 이용한 온실용 냉난방시스템 개발)

  • Lee Yong-Beom;Cho Seong-In;Lee Jae-Han;Kim Tae-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.688-692
    • /
    • 2005
  • Importance of substitute energy has been increasing due to environmental issues and lack of fossil fuels. In addition, heating cost that occupies from 30 to $40\%$ of the total production cost in Korean protected cultivation needs to be reduced for profitability and global competition. But, studying on substitute energy to solve these problems has not been activated for Korean protected cultivation. Therefore, this study was conducted to develop a geothermal heat pump system for cool ing and heat ing of greenhouses at a lower cost than conventional hot air heater and air conditioner. Fundamental test of heat transfer characteristics in soil was conducted by computer simulation and controlled tests for its verification. Based on the results of the theoretical and empirical investigations, an optimum heat pump system was developed and the performance was evaluated for practical use in a greenhouse at the Pusan Horticultural Experiment Station. The system was compared with a conventional hot air heating system through a cucumber growing test and economic feasibility analysis. Results of the application test of the geothermal heat pump showed that with an initial setting of $15^{\circ}C$ the inside temperature of the greenhouse could be maintained between 15 and $17^{\circ}C$. Results of the cucumber growing test showed that there were no significant differences in average height, leaf length, leaf width, number of nods, leaf area, dry weight and yield between the plots wi th the geothermal heat pump system and a conventional hot air heater. Economic feasibility analysis indicated that the variable cost of the hot air heater could be saved $81.2\%$ using the geothermal heat pump system. It was concluded that the geothermal heat pump system might be a pertinent heating and cooling system for greenhouses because of the low operating cost and the use of environment-friendly geothermal energy.

  • PDF