• Title/Summary/Keyword: Heating and cooling system

Search Result 938, Processing Time 0.036 seconds

Economic Analysis of Cooling-Heating System Using Ground Source Heat in Horticultural Greenhouse (시설원예의 지열냉·난방시스템 경제성 분석)

  • Ryoo, Yeon-Su;Joo, Hye-Jin;Kim, Jin-Wook;Park, Mi-Lan
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.6
    • /
    • pp.60-67
    • /
    • 2012
  • Government Geothermal Cooling-Heating Projects has made efforts to reduce GHG(Greenhouse Gas) emissions and to manage cost of greenhouse farm households. This study evaluated the economic benefits of heating load rate of change by comparing Geothermal Cooling-Heating System with the existing system(greenhouse diesel heating) in the Government Geothermal Cooling-Heating Projects. Economic analysis results shows that, 1) When installing the Cooling-Heating system according to the ratio of 70% heating load in policy standards, the geothermal cooling-heating system has economic efficiency with greenhouse type or scale independent because the investment cost is recovered within 7 years. And It was more economic efficiency the ratio of 50% heating load than70% heating load. 2) When installing the Cooling-Heating system according to the glass greenhouse of the ratio of 90% heating load, pay period of investment cost is recovered within 5 years. Therefore it is necessary to apply flexible heating sharing according to greenhouse type or scale.

A Study of Storage Type Cooling and Heating System by Heat Pipe (히트파이프를 이용한 축열식 냉.난방 시스템에 관한 연구)

  • Kim, Seong-Sil;Harm, Seong-Chol;Lee, Yang-Ho;Choi, Byoung-Youn
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.3-8
    • /
    • 2006
  • The heat pump system is attractive alternatives to conventional heating and cooling systems owing to their higher energy utilization efficiency. The thermal loads of commercial and institutional buildings are generally cooling-dominated. In this study have been developed ice storage type heat pump system for cooling and heating by heat pipe. This system was practiced performance test on evaluation criteria for heat storage systems. Accomplished the actual proof examination and looked into the performance of the system. In this study, measurement and analysis of ice storage type heat pump system for cooling and heating by heat pipe. The heat pump unit COP appears 3.05 for cooling and 4.20 for heating. As a result, the method to energy saving and to using a substitute energy actively that is heat pump cooling & heating system is expected by heat pipe. Thermal storage capacity appears $19.5RTH/m^3$ for cooling.

  • PDF

Performance Evaluation of the Capillary Tube Radiant Floor Cooling & Heating System (모세유관 바닥복사 냉·난방 시스템의 성능평가)

  • Seo, Yu-jin;Kim, Taeyeon;Leigh, Seung-bok
    • KIEAE Journal
    • /
    • v.12 no.4
    • /
    • pp.89-95
    • /
    • 2012
  • At present, many countries are trying to reduce green gas emissions to mitigate the effects of these gases on climate change. Year after year, there have been efforts to cut energy use for heating and cooling. Heating and cooling systems, common in all forms of housing, are increasing due to the constant supply of new housing resulting from improvements in economic growth and the quality of life. Thus, studies related to the design of cooling and heating systems to improve energy efficiency are expanding. Among the new designs, radiant floor cooling and heating systems which use capillary tubes are becoming viable means of reducing energy use. Radiant floor cooling and heating systems which use capillary tubes are creative and sustainable systems in which cool and hot water is circulated into capillary tube which has small diameter. In this study, the cooling and heating performance of this type of capillary tube system is investigated in an experimental study and a simulation using TRNSYS. The results of the experimental study show that under a peak load, a capillary tube radiant floor cooling system using geothermal energy can achieve desired indoor temperature without an additional heat source. The set room air temperature is maintained while the floor surface temperature, PMV and PPD remain within the comfort range. Also, this system is more economic than a packaged air conditioner system due to its higher COP. The results of the simulation show that the capillary tube radiant floor heating system maintains set temperature more stable than a PB pipe radiant floor heating system due to its lower supply temperature of hot water. In terms of energy consumption, the capillary tube radiant floor heating system is more efficient than the PB pipe radiant floor heating system.

Evaluation of thermal performance for solar cooling and heating system (태양열 냉.난방 및 급탕 시스템 열성능)

  • Kwak, Hee-Youl;Joo, Hong-Jin;Lee, Ho
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.203-208
    • /
    • 2009
  • This paper presents demonstration study results derived through field testing of a solar assisted cooling and heating system for the library of a cultural center building located in Gwangju, Korea. The area of demanded cooling and heating for building was about 350m2. Solar hot water was delivered by means of a 200m2 array of evacuated tubular solar collector (ETSC) to drive a single-effect (LiBr/H2O) absorption chiller of 10RT nominal cooling capacity. From March in 2008 to February in 2009, demonstration test were performed for solar cooling and heating system. After experiments and analysis, this study found that solar thermal system was 84% for the solar hot water supply and 12% for space heating and 4% for space cooling.

  • PDF

Cooling and Heating Characteristics of System A/C using the Digital Scroll Compressor (디지털 스크롤 압축기를 이용한 시스템 에어컨의 냉난방특성)

  • Jun, Young-Ho;Kim, Dae-Hun;Kweon, Young-Chel;Lee, Yun-Su;Moon, Je-Myung;Hong, Ju-Tae
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1536-1541
    • /
    • 2003
  • In order to investigate the cooling and heating characteristics of a variable-capacity system A/C using a digital scroll compressor, the cooling and heating capacities and EER are measured by the psychrometric calorimeter. The capacity of the system is controlled by the digital scroll compressor, which is operated by controling PWM valve and the loading vs. unloading time. When the system A/C is operated under the cooling and heating standard conditions, EER is nearly uniform but cooling capacity and heating capacity increase at minimum, rated and maximum modes. When the auxiliary heater is on, at the cold region, the system A/C produces the excellent heating capacity.

  • PDF

Experimental Study on Performance Evaluation of System Air-Conditioner using Compressor of PWM or Inverter Method (Cooling and Heating Characteristics) (PWM 방식과 인버터 방식의 압축기를 사용한 시스템 에어컨의 성능평가에 대한 실험적 연구(냉난방 특성))

  • 전용호;김대훈;허삼행;권영철;문제명;홍주태
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.9
    • /
    • pp.738-743
    • /
    • 2003
  • In the present study, the heating and cooling characteristics of system air-conditioner using a PWM compressor or a BLDC inverter compressor are investigated by the psychometric calorimeter using air enthalpy method. Cooling and heating capacities, power inputs and COPs are measured at the low, moderate, high loads under the cooling and heating standard conditions. At cooling conditions, the capacity of the PWM system is larger than that of the inverter case. Due to large power input, however, low COPs are measured under total load ranges. At heating conditions, the capacity of the PWM method is a little larger than that of the inverter case, except high load range. Since power input is low, large COPs are measured at moderate and high load ranges, which are different from cooling data. This shows that the PW system compared with the inverter case has good energy consumption efficiency at moderate and high load ranges except low load range. And when the system A/C is operated under the cooling and heating standard conditions, COPs are nearly uniform at total load ranges.

Economic Analsys of Cooling-Heating System Using Ground Source Heat in Multi Family Apartment (공동주택에서 지열 냉난방 시스템 적용시 경제성 분석)

  • Park, Yongboo;Park, Jongbae;Lim, Haesik;Baek, Sungkoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.3
    • /
    • pp.11-18
    • /
    • 2007
  • This paper studied the economical efficiency of ground source heat pump system under various conditions in apartments which have important effects on the housing market. And this study analysed the initial cost increase, saved managing cost and recovery time of initial cost. Analysis result showed as time of heating-cooling and water heating increases, the amount of saved managing cost increased much than the initial construction cost, so recovery time shortened. And as the net area of apartment increases, the recovery time increased. The study of the relation between the installation type and recovery time of initial construction cost showed when heat-cooling system adapted ground source heat and water heating system adapted waste heat, the initial construction cost was recovered most quickly. When Ground Source Heating system was used for the heating-cooling and water heating system, ground source heating system was used for the heating-cooling and waste heat used for water heating, and ground source heating system was used for the heating-cooling and LNG used for water heating, the construction cost increased 72,000, 66,900 and 62,300 won each per $m^2$ compared to the current system (package air-conditioner, heating and water heating using LNG).

  • PDF

A Study for Automatic Temperature Control of the Heating-Cooling System with Heat Pump (히트펌프 냉·난방 시스템의 온도 자동제어에 관한 연구)

  • Koo, Chang-Dae
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.14 no.4
    • /
    • pp.143-149
    • /
    • 2011
  • The experiment has been investigated the room temperature change under adjusting 4-way valve which was installed for cooling and heating switch. Beside, the temperature of heat pump was controlled automatically for autonomously adjusting temperature and maintaining a constant room temperature. As results, Inlet & outlet temperature differences of compressor are $95^{\circ}C$ in cooling condition and $57^{\circ}C$ in heating condition. Therefore, Compression efficiency of cooling effect is higher than heating effect. In addition, Heat exchange effect of Cooling system condition is higher than heating system. This results can be used for studying about automatic temperature control of cooling and heating system with heat pump and 4way valve.

Cooling Performance Analysis of Solar Heating and Cooling System in an Office Building (사무소 건물 적용 태양열냉난방시스템의 냉방성능 분석)

  • Jang, Jae-Su;Ko, Myeong-Jin;Kim, Yong-Shik
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.217-222
    • /
    • 2011
  • This study examined the cooling performance of a solar heating and cooling system for an office building using the dynamic simulation program (TRNSYS). This solar heating and cooling system incorporates evacuated tube solar collectors of $204m^2$, storage tank of $8m^3$, 116.2kW auxiliary heater, single-effect $LiBr/H_2O$ absorption chiller of 20RT nominal cooling capacity. It was found that for the representing day showed peak cooling load the annual average collection efficiency of the collector was 32.9% and coefficient of performance of single-effect $LiBr/H_2O$ absorption chiller was 0.68. And the results shows for the cooling season the solar fraction of the solar heating and cooling system was 32.2% and maximal and minimal solar fraction was 63.4% for May 17.9% for July respectively.

  • PDF

Development of Cooling and Heating System for Matt (매트용 냉난방 시스템 개발)

  • Cho, Hyun-Seob
    • Proceedings of the KAIS Fall Conference
    • /
    • 2008.05a
    • /
    • pp.163-166
    • /
    • 2008
  • This study developed matt used by thermoelectric device to use both cooling and heating. To develop this system, heating system used sheath heater and cooling system used thermoelectric device. A Flow of water controlled by a capillary tube system made by polymethyl. Results by this system very lowered spending of energy.

  • PDF