• Title/Summary/Keyword: Helicon

Search Result 58, Processing Time 0.024 seconds

헬리콘 플라즈마의 연구 현황

  • 엄세훈;장홍영
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.183-183
    • /
    • 2000
  • Aigrain에 의해 Helicon이라는 이름이 명명된 이후, helicon은 저온의 금속과 같은 높은 전도도(conductivity)를 갖는 매질이나 강한 자기장이 걸려있는 plasma를 전파해 나가는 저주파 전자기장을 지칭해왔다. 이온화된 개스에서 이러한 전자기장은 전자 공명 주파수(electron cyclotron frequency)와 이온 공명 주파수(ion cyclotron frequency) 사이의 주파수로 전파하며 전리층 (ionosphere)을 통과하며 발생하는 가청 주파수 영역대의 음조가 강하하는 현상에 의해 low-frequency whistler라고도 불린다. Helicon wave plasma는 Boswell에 의해 처음 발생된 후, 높은 이온화율(~100%)로 인해 많은 연구가 이루어져 왔다. 1985년에 Chen은 helicon plasma의 높은 이온화율을 설명하기 위해 Landaudamping을 제시하였다. 이러한 설명은 1997년에 Shamrai에 의해 TG mode가 도입되기 전까지 직접적인 실험결과 없이 helicon plasma 발생의 mechanism으로 받아들여졌다. shamrai의 이론에 의하면 정전기파(electrostatic wave)는 plasma의 표면(surface)에서 강하게 감쇄되어 energy를 전달하게 된다. Cho는 radial density 분포가 외각보다 중심이 높을 경우 TG wave의 power 전달이 중심에서 일어날 수 있음을 계산하였다. Helicon plasma의 특성은 높은 이온화율에 의한 높은 밀도($\geq$1012cm3), 1-2 kW의 rf power에서 상대적으로 낮은 전자 온도( 4eV), $\omega$ci $\omega$LH<$\omega$ $\omega$ce $\omega$pe 영역대의 주파수, 자기장 50-1200 Gauss, 압력 1-10 mTorr로 특정지을 수 있다. 이러한 외부분수들의 조건에 k라 helicon plasma는 여러 종류의 mode로 존재한다. Degeling은 이러한 mode의 변화를 capacitive mode, inductive mode, 그리고 helicon mode(wave mode)의 세가지 부분으로 구분하였다. Helicon plasma가 갖는 높은 이온화율은 여러 가지 응용으로의 가능성을 가지고 있다. 그 예로 plasma processing, plasma wave에 의한 입자 가속, 그리고 가스 레이저 활성 매질 발생 등이 있다. 특히 plasma processing의 경우 helicon plasma는 높은 밀도, 비교적 낮은 자기장, remote operation 등이 가능하다는 점에서 현재 연구가 활발히 진행되고 있다. 상업용으로도 PMT와 Lucas Signatone Corp.에 서 helicon source가 제작되었다. 또한 높은 해리율을 이용하여 저유전 물질인 SiOF의 증착에서 적용되고 있다. 이 외에도 다수의 연구결과들이 발표되었다.

  • PDF

Electrical Characteristics of Helicon Wave plasmas (헬리콘 플라즈마의 전기적 특성)

  • 윤석민;김정형;서상훈;장흥영
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.1
    • /
    • pp.85-92
    • /
    • 1996
  • The external electricla characteristics of helicon wave plasmas were measured over a wide range of RF power and magnetic filed. External parameters. such as antenna voltage , current, phase shift, and interanl parameter, electron density were measured at 7MHz, 1mTorr Ar discharge . The equivalent discharge resistance and reactance, and the power transfer efficiency were calculated through these measurements. There are a helicon mode which produces high density plasma by helicon wave and a lowmode which produces low density plasma by capaictive electric field. In case of the helicon mode, the anternna voltage and current were lower than those of the low-mode. The phase difference between voltage and current decreased suddenly at the transition point from the low-mode to the helicon mode. Equivalent resistance and power efficiency increased and reactance decreased suddenly at the transition point. These results mean that the power transperred to plasma and the nutual coupling between the antenna and plasma increase as the mode changes from the low-mode to the helicon mode.

  • PDF

A Study on the Ion Energy Distribution Functions and Plasma Potentials in the Helicon Wave Plasmas (헬리콘 플라즈마에서 이온 에너지 분포 및 플라즈마 전위에 관한 연구)

  • 김정형;서상훈;장홍영
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.2
    • /
    • pp.201-209
    • /
    • 1995
  • 고밀도 helicon wave 플라즈마의 특성 및 이온 에너지 분포에 관하여 연구하였다. Helicon wave에 의하여 고밀도의 플라즈마를 형성시키는 helicon mode와 capacitive field가 지배적이어서 electrostatic 방전이 되어 저밀도의 플라즈마를 형성시키는 low mode가 존재하는 것을 관찰하였다. rf modulation된 플라즈마 전위가 이온 에너지 분석기를 통하여 얻어지는 이온 에너지 분포에 미치는 영향을 이론 및 실험적으로 관찰하였다. 이온 에너지 분포의 분석을 통하여 low mode에서는 플라즈마 전위가 rf 주파수로 Vp-p의 크기로 modulation되는 것을 확인하였다. Helicon mode에서는 inductive field가 capacitive field보다 우세하기 때문에 플라즈마 전위의 rf modulation은 일어나지 않았다.

  • PDF

An Experimental Study on Multiple ICP & Helicon Source for Oxidation in Semiconductor Process

  • Lee, Jin-Won;Na, Byoung-Keun;An, Sang-Hyuk;Chang, Hong-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.271-271
    • /
    • 2012
  • Many studies have been investigated on high density plasma source (Electron Cyclotron Resonance, Inductively Coupled Plasma, Helicon plasma) for large area source after It is announced that productivity of plasma process depends on plasma density. In this presentation, we will propose the new concept of the multiple source, which consists of a parallel connection of ICP sources and helicon plasma sources. For plasma uniformity, equivalent power (especially, equivalent current in ICP & Helicon) should distribute on each source. We design power feeding line as coaxial transmission line with same length of ground line in each source for equivalent power distribution. And we confirm the equivalent power distribution with simulation and experimental result. Based on basic study, we develop the plasma source for oxidation in semiconductor process. we will discuss the relationship between the processing parameters (With or WithOut magnet, operating pressure, input power ). In ICP, plasma density uniformity is uniform. In ICP with magnet (or Helicon) plasma density is not uniform. As a result, new design (magnet arrangement and gas distributor and etc..) are needed for uniform plasma density in ICP with magnet and Helicon.

  • PDF

Experimental Research of an ECR Heating with R-wave in a Helicon Plasma Source

  • Ku, Dong-Jin;An, C.Y.;Park, Min;Kim, S.H.;Wang, S.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.274-274
    • /
    • 2012
  • We have researched on controlling an electron temperature and a plasma collision frequency to study the effect of collisions on helicon plasmas. So, we have designed and constructed an electron cyclotron resonance (ECR) heating system in the helicon device as an auxiliary heating source. Since then, we have tried to optimize experimental designs such as a magnetic field configuration for ECR heating and 2.45GHz microwave launching system for its power transfer to the plasma effectively, and have characterized plasma parameters using a Langmuir probe. For improving an efficiency of the ECR heating with R-wave in the helicon plasma, we would understand an effect of R-wave propagation with ECR heating in the helicon plasma, because the efficiency of ECR heating with R-wave depends on some factors such as electron temperature, electron density, and magnetic field gradient. Firstly, we calculate the effect of R-wave propagation into the ECR zone in the plasma with those factors. We modify the magnetic field configuration and this system for the effective ECR heating in the plasma. Finally, after optimizing this system, the plasma parameters such as electron temperature and electron density are characterized by a RF compensated Langmuir probe.

  • PDF

A study on the formation and removal of residue and damaged layer on the overched silicon surface during the contact oxide etching using $C_4$F$_8$/H$_2$ helicon were plasmas (C$_4$F$_8$/H$_2$ helicon were 플라즈마를 이용한 contact 산화막 식각 공정시 과식화된 실리콘 표면의 잔류막과 손상층 형성 및 이의 제거에 관항 연구)

  • 김현수;이원정;백종태;염근영
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.2
    • /
    • pp.117-126
    • /
    • 1998
  • In this study, the residue remaining on the silicon wafer during the oxide overetching using $C_4F_8/H_2$ helicon were plasmas and effects of various cleaning and annealing methods on the removal of the remaining residue were investigated. The addition of 30%$H_2$ to the C4F8 plasma increased the C/F ratio and the thickness of the residue on the etched silicon surface. Most of the residuse on the etched surfaces colud be removed by the oxygen plasmsa cleaning followed by thermal annealing over $450^{\circ}C$. Hydrogen-coataining residue formed on the silicon by 70%$C_4F_8/30%H_2$ helicon plasmas was more easily removed than hydrogen-free residue formed residue formed by $C_4F_8$ helicon wear plasmas. However, damage remaining on the silicon surface overetched using 70%$C_4F_8/30%H_2$ helicon plasmas was intensive and the degree of reocvery duing the post-annealing was lower.

  • PDF

On the Possibility of Multiple ICP and Helicon Plasma for Large-area Processes

  • Lee, J.W.;An, Sang-Hyuk;Chang, Hong-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.234.1-234.1
    • /
    • 2014
  • Many studies have been investigated on high density plasma source (Electron Cyclotron Resonance[ECR], Inductively Coupled Plasma[ICP], Helicon plasma) for large area source after It is announced that productivity of plasma process depends on plasma density. Among them, Some researchers have been studied on multiple sources In this study, we attempted to determine the possibility of multiple inductively coupled plasma (ICP), and helicon plasma sources for large-area processes. Experiments were performed with the one and two coils to measure plasma and electrical parameters, and a circuit simulation was performed to measure the current at each coil in the 2-coil experiment. Based on the result, we could determine the possibility of multiple ICP sources due to a direct change of impedance due to current and saturation of impedance due to the skin-depth effect. However, a helicon plasma source is difficult to adapt to the multiple sources due to the consistent change of real impedance due to mode transition and the low uniformity of the B-field confinement. As a result, it is expected that ICP can be adapted to multiple source for large-area processes.

  • PDF

Characterization of Helicon Plasma by H$_2$ Gas Discharge and Fabrication of Diamond Tinn Films

  • Hyun, June-Won;Kim, Yong-Jin;Noh, Seung-Jeong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.2
    • /
    • pp.12-17
    • /
    • 2000
  • Helicon waves were excited by a Nagoya type III antenna in magnetized plasma, and hydrogen and methane are fed through a Mass Flow Controller(MFC). We made a diagnosis of properties of helicon plasma by H$_2$gaseous discharge, and fabricated the diamond thin film. The maximum measured electron density was 1${\times}$10$\^$10/ cm$\^$-3/. Diamond films have been growo on (100) silicon substrate using the helicon plasma chemical vapor deposition. Diamond films were deposited at a pressure of 0.1 Torr, deposition time of 40~80 h, a substrate temperature of 700$^{\circ}C$ and methane concentrations of 0.5~2.5%. The growth characteristics were investigated by means of X-ray Photoelectron (XPS) and X-ray Diffraction(XRD), XRD and XPS analysis revealed that SiC was formed, and finally diamond particles were definitely deposited on it. With increasing deposition time, the thickness and crystallization of the daimond thin film increased, For this system the optimum condition of methane concentration was estimated to near to 1.5%.

  • PDF

Carbon Nanotube Deposition using Helicon Plasma CVD at Low Temperature

  • Muroyama, Masakazu;Kazuto, Kimura;Yagi, Takao;Inoue, Kouji;Saito, Ichiro
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.201-202
    • /
    • 2003
  • We developed a novel growth method of aligned carbon nanotubes. Aligned carbon nanotubes are grown on a metal catalyst on a glass substrate using biased Helicon plasma chemical vapor deposition (HPECVD) of $CH_4/H_2$ gases from 400 C to 500 C. The Helicon plasma source is one of the high-density plasma sources and is promising for low temperature carbon deposition. A Ni film was used as a catalyst to reduce the activation energy of the nanotubes' growth. The carbon nanotubes were deposited on the nickel catalysis layer selectively.

  • PDF

A Study on the Plasma Etching of Ru Electrodes using $O_2/Cl_2$ Helicon Discharges

  • Kim, Hyoun-Woo;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • v.2 no.4
    • /
    • pp.189-193
    • /
    • 2003
  • The Ru etching using $O_2/C_{12}$ plasmas has been studied by employing the helicon etcher. The changes of Ru etch rate, Ru to $SiO_2$ etch selectivity and Ru electrode etching slope with varied process variables were investigated. The Ru etching slope at the optimized etching condition was measured to be $84^{\circ}$. We reveal that the Ru etching using $O_2/C_{12}$ plasma generates the $RuO_2$ thin film. Possible mechanism of Ru etching is discussed.