• 제목/요약/키워드: Helicopter Flight Controller

검색결과 38건 처리시간 0.024초

Adaptive Fuzzy Controller Design for Altitude Control of an Unmanned Helicopter

  • Kim, Jong-Kwon;Park, Soo-Hong;Cho, Kyeum-Rae;Jang, Cheol-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.590-593
    • /
    • 2005
  • Unmanned Helicopter has several abilities such as vertical Take off, hovering, low speed flight at low altitude. Such vehicles are becoming popular in actual applications such as search and rescue, aerial reconnaissance and surveillance. These vehicles also used under risky environments without threatening the life of a pilot. Since a small unmanned helicopter is very sensitive to environmental conditions, it is generally known that the flight control is very difficult problems. The nonlinear adaptive fuzzy controller design procedure and its applications for altitude control of unmanned helicopter were described in the paper. This research was concentrated on describing the design methodologies of altitude controller design for small unmanned helicopter acquiring autonomous take off and vertical movement. The design methodologies and performance of the altitude controller were simulated and verified with an adaptive fuzzy controller. Throughout simulation results, I showed that the proposed adaptive controllers have enhanced control performance such as robustness, effectiveness and safety, in the altitude control of the unmanned helicopter.

  • PDF

마이크로콘트롤러를 이용한 모형헬리콥터 정지비행 제어기 설계 (Design of hovering flight controller for a model helicopter using a microcontroller)

  • 박현식;이준호;이은호;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.185-188
    • /
    • 1993
  • The goal of this paper is to develop an on-board controller for a model helicopter's hovering attitude control, using i8096 one-chip microcontroller. Required controller algorithm is programmed in ASM-96 assembly language and downloaded into an i8096 microcontroller. The performance of hovering flight using this system is verified by experiments with the model helicopter mounted on an instrumented flight stand where 3 potentiometers and an optical proximity sensor measure te attitude and main rotor speed of the helicopter.

  • PDF

A Flight Control System design for an Unmanned Helicopter

  • Park, Soo-Hong;Kim, Jong-Kwon;Jang, Cheol-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1375-1379
    • /
    • 2004
  • Unmanned Helicopter has several abilities such as vertical Take off, hovering, low speed flight at low altitude. Such vehicles are becoming popular in actual applications such as search and rescue, aerial reconnaissance and surveillance. These vehicles also used under risky environments without threatening the life of a pilot. Since a small aerial vehicle is very sensitive to environmental conditions, it is generally known that the flight control is very difficult problems. In this paper, a flight control system was designed for an unmanned helicopter. This paper was concentrated on describing the mechanical design, electronic equipments and their interconnections for acquiring autonomous flight. The design methodologies and performance of the helicopter were illustrated and verified with a linearized equation of motion. The LQG based estimator and controller was designed and tested for this unmanned helicopter.

  • PDF

Design of 6-DOF Attitude Controller of the UAV Simulator's Hovering Model

  • Keh, Joong-Eup;Lee, Mal-Young;Kim, Byeong-Il;Chang, Yu-Shin;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.969-974
    • /
    • 2004
  • For a maneuvering unmanned autonomous helicopter, it is necessary to design a proper controller of each flight mode. In this paper, overall helicopter dynamics is derived and hovering model is linearized and transformed into a state equation form. However, since it is difficult to obtain parameters of stability derivatives in the state equation directly, a linear control model is derived by time-domain parametric system identification method with real flight data of the model helicopter. Then, two different controllers - a linear feedback controller with proportional gains and a robust controller - are designed and their performance is compared. Both proposed controllers show outstanding results by computer simulation. These validated controllers can be used to autonomous flight controller of a real unmanned model helicopter.

  • PDF

SDRE 기법을 이용한 비선형 헬리콥터의 비행 경로점 유도제어 (Waypoints Guidance of the Nonlinear Helicopter using the SDRE Technique)

  • 김민재;양창덕;홍지승;김창주
    • 대한기계학회논문집A
    • /
    • 제33권9호
    • /
    • pp.922-929
    • /
    • 2009
  • This paper deals with the State-Dependent Riccati Equation (SDRE) Technique for the design of helicopter nonlinear waypoint guidance controller. To generate the flight guidance through multiple waypoints, we use the trigonometric spline. The controller design and its validation is based upon a level 2 simulation helicopter model and the designed SDRE controller is applied to the trajectory tracking problems. To validate the designed SDRE controller, the simulation environment of high fidelity helicopter model is developed using three independent computers. This paper focuses on the validation the present SDRE controller through the helicopter waypoint guidance simulation.

모형 헬리콥터 정지비행제어에 관한 연구 (A Study on Hovering Flight Control for a Model Helicopter)

  • 심현철;이은호;이교일
    • 대한기계학회논문집
    • /
    • 제18권6호
    • /
    • pp.1399-1411
    • /
    • 1994
  • A model helicopter has more versatile flight capability than the fixed-wing aircraft and it can be used as an unmaned vehicle in hazardous area. A helicopter, similar to other aircrafts, is an unstable, multi-input multi-output nonlinear system exposed to strong disturbance. So it should be controlled by robust control theories that can be applied to multivariable systems. In this study, motion equations of hovering are established, linearized and transformed into a state equation form. Various parameters are measured and calculated in other to obtain the stability derivatives in the state equation. Hovering flight controller is designed using the digital LQG/LTR(Linear Quadratic Gaussian/Loop Transfer Recovery) control theory. The designed controller is tested by the nonlinear simulations and implemented on an IBM-PC/386. Experiments were carried out on a model helicopter attached to the 3-DOF gimbal. The designed controller showed satisfactory hovering capability to maintain the hovering for more than 40 seconds.

CIFER®를 이용한 무인 헬리콥터의 동특성 분석 (II) - 주파수 응답 해석 - (Flight Dynamic Identification of a Model Helicopter using CIFER®(II) - Frequency Response Analysis -)

  • 배영환;구영모
    • Journal of Biosystems Engineering
    • /
    • 제36권6호
    • /
    • pp.476-483
    • /
    • 2011
  • The aerial application using an unmanned helicopter has been already utilized and an attitude controller would be developed to enhance the operational convenience and safety of the operator. For a preliminary study of designing flight controller, a state space model for an RC helicopter would be identified. Frequency sweep flight tests were performed and time history data were acquired in the previous study. In this study, frequency response of the flight test data of a small unmanned helicopter was analyzed by using the CIFER software. The time history flight data consisted of three replications each for collective pitch, aileron, elevator and rudder sweep inputs. A total of 36 frequency responses were obtained for the four control stick inputs and nine outputs including linear velocities and accelerations and angular velocities in 3-axis. The results showed coherence values higher than 0.6 for every primary control inputs and corresponding on-axis outputs for the frequency range from 0.07 to 4 Hz. Also the analysis of conditioned frequency response showed its effectiveness in evaluating cross coupling effects. Based on the results, the dynamic characteristics of the model helicopter can further be analyzed in terms of transfer functions and the undamped natural frequency and damping ratio of each critical mode.

Design of hovering flight controller for a model helicopter

  • Shim, Hyeoncheol;Lee, Ho-Eun;Park, Hyunsik;Lee, Kyo-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.344-348
    • /
    • 1992
  • This paper describes a procedure to design a hovering flight controller for a model helicopter using LQG theory. Parameters of the model helicopter in hover are obtained using direct measurements and calculations proposed by other research. A feedback co is by using digital LQG theory. First, a full state feedback controller is designed to the discretized system taking desirable transient response and other assumptions into account. Then a full-state estimator is designed and revised until desirable response is obtained while global stability is maintained. Performance of the controller is tested by computer simulations. Experiments have been performed using a 3-degree-of-freedom gimbal that holds the model helicopter, and the controller exhibited stable hover capability.

  • PDF

Minimal Order LQG/LTR 기법에 의한 모형헬리콥터의 정지비행 자세제어 (Hovering Flight Control for a Model Helicopter using the Minimal-Order LQG/LTR Technique)

  • 양준선;한권희;이자성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.457-459
    • /
    • 1998
  • This paper presents a 3-DOF hovering flight controller for a model helicopter using the minimal order LQG/LTR technique. A model helicopter is an unstable multi-input multi-output nonlinear system strongly exposed to disturbances, so a robust multi-variable control theory should be applied to control it. The minimal order LQG/LTR technique which uses a reduced-order observer in the LTR procedure is used to design the controller. Performances for the 3-DOF hovering flight controller are evaluated through computer simulations.

  • PDF

CIFER®를 이용한 무인 헬리콥터의 동특성 분석 (I) - 조종기 제어 입력 데이터 획득을 위한 비행시험 - (Flight Dynamic Identification of a Model Helicopter using CIFER®(I) - Flight test for the acquisition of transmitter input data -)

  • 박희진;구영모;배영환;오민석;양철오;송명현
    • Journal of Biosystems Engineering
    • /
    • 제36권6호
    • /
    • pp.467-475
    • /
    • 2011
  • Aerial spraying technology using a small unmanned helicopter is an efficient and practical tool to achieve stable agricultural production to improve the working condition. An attitude controller for the agricultural helicopter would be helpful to aerial application operator. In order to construct the flight controller, a state space model of the helicopter should be identified using a dynamic analysis program, such as CIFER$^{(R)}$. To obtain the state space a model of the helicopter, frequency-sweep flight tests were performed and time history data were acquired using a custom-built stick position transmitter. Four elements of stick commands were accessed for the collective pitch (heave), aileron (roll), elevator (pitch), rudder (yaw) maneuvers. The test results showed that rudder stick position signal was highly linear with rudder input channel signal of the receiver; however, collective pitch stick position signal was exponentially manipulated for the convenience of control stick handling. The acquired stick position and flight dynamic data during sweep tests would be analyzed in the followed study.