• Title/Summary/Keyword: Hepatotoxicity and nitric oxide

Search Result 21, Processing Time 0.038 seconds

Biphasic Effects of Nitric Oxide in Liver Toxicity (간장독성에서 니트릭 옥시드의 양면적 효과)

  • Park, Chang-Won;Cho, Dae-Hyun;Hong, Sung-Youl;Han, Jeung-Whan;Lee, Hyang-Woo
    • YAKHAK HOEJI
    • /
    • v.42 no.6
    • /
    • pp.598-606
    • /
    • 1998
  • The liver expresses a considerable amount of nitric oxide (NO) upon induction with cytokines or/and endotoxin. The NO synthesized by inducible NO synthase (NOS) of the liver see ms to play a role in various hepatic physiological processes. Here we investigate the effects of NO on acetaminophen (AA)-induced liver injury. The treatment of S-nitros-N-acetyl penicillamine (SNAP, exogenous NO donor) at the dose of 0.1mM decreased AA-induced hepatotoxicity suggesting the possibility of NO to play a role in protection from the hepatotoxicity induced by AA. On the other hand, the excessive NO produced by NO donor (SNAP: 0.5, 2.5, 6.25mM) has been shown to cause a concentration dependent hepatotoxicity, and such damages was decreased by Superoxide and increased by superoxide dismutase, indicating that the hepatotoxicity induced by excessive NO depends on balancing between NO and superoxide. Taken together, the results indicate that NO has biphasic effects on hepatotoxicity.

  • PDF

YH439, a Hepatoprotective Agent, Suppresses Cytokines and Nitric Oxide Production in LPS-primed Rats Administered with $CCL_4$ ($CCI_4$와 Lipopolysaccharide로 유도한 흰쥐 간 독성에 대한 YH439의 방어작용 : cytokines 및 nitric oxide 생성의 억제)

  • 김연숙;이종욱;김낙두
    • YAKHAK HOEJI
    • /
    • v.43 no.2
    • /
    • pp.198-207
    • /
    • 1999
  • The aim of the present investigation was to examine whether YH439, a hepatoprotective agent, exerts protective effect against hepatotoxicity and reduces the production of cytokines and NO in lipopolysaccharide (LPS)-primed rats with carbon tetrachloride ($CCl_4$). Administration of LPS following a single dose of CCl4 injection resulted in remarkable elevations of the serum $TNF{\alpha},{\;}IL-l{\beta$ and IL-6 level. The serum NO level was moderately elevated and severe liver damage was evidenced by increases in serum alanine aminotransferase (ALT) and sorbitol dehydrogenase (SDH) activities. YH439 decreased the levels of TNF, $IL-l{\beta}$, IL-6, ALT, SDH as well as NO in the serum elevated by CCl4+LPS in a dose-dependent manner. Inducible nitric oxide synthase (iNOS) level was decreased in the liver of rats treated with YH439. The increased iNOS activity induced by LPS and $interferon-{\gamma}$ was significantly decreased in RAW 264.7 cells by YH439 treatment. YH439 increased the GSH level decreased by $CCl_4+LPS$ and suppressed the ratio of GSSG/GSH. The reduction of hepatotoxicity by YH439 may associated with the decrease in the production of cytokines as well as suppression of iNOS protein in conjunction with an increase in the GSH level.

  • PDF

Silymarin Modulates Cisplatin-Induced Oxidative Stress and Hepatotoxicity in Rats

  • Mansour, Heba Hosny;Hafez, Hafez Farouk;Fahmy, Nadia Mohamed
    • BMB Reports
    • /
    • v.39 no.6
    • /
    • pp.656-661
    • /
    • 2006
  • Cisplatin (CDDP) is a widely used anticancer drug, but at high dose, it can produce undesirable side effects such as hepatotoxicity. Because silymrin has been used to treat liver disorders, the protective effect of silymarin on CDDP -induced hepatotoxicity was evaluated in rats. Hepatotoxicity was determined by changes in serum alanine aminotransferase [ALT] and aspartate aminotransferase [AST], nitric oxide [NO] levels, albumin and calcium levels, and superoxide dismutase [SOD], glutathione peroxidase [GSHPx] activities, glutathione content, malondialdehyde [MDA] and nitric oxide [NO] levels in liver tissue of rats. Male albino rats were divided into four groups, 10 rats in each. In the control group, rats were injected i.p. with 0.2 ml of propylene glycol in saline 75/25 (v/v) for 5 consecutive days [Silymarin was dissolved in 0.2 ml of propylene glycol in saline 75/25 v/v]. The second group were injected with CDDP (7.5 mg /kg, I.P.), whereas animals in the third group were i.p. injected with silymarin at a dose of 100 mg/kg/day for 5 consecutive days. The Fourth group received a daily i.p. injection of silymarin (100 mg/kg/day for 5 days) 1 hr before a single i.p. injection of CDDP (7.5 mg/kg). CDDP hepatotoxicity was manifested biochemically by an increase in serum ALT and AST, elevation of MDA and NO in liver tissues as well as a decrease in GSH and the activities of antioxidant enzymes, including SOD, GSHPx in liver tissues. In addition, marked decrease in serum NO, albumin and calcium levels were observed. Serum ALT, AST, liver NO level, MDA was found to decreased in the combination group in comparison with the CDDP group. The activities of SOD, GSHPx, GSH and serum NO were lower in CDDP group than both the control and CDDP pretreated with silymarin groups. The results obtained suggested that silymarin significantly attenuated the hepatotoxicity as an indirect target of CDDP in an animal model of CDDP-induced nephrotoxicity.

Correlation between Protein Methylation and Hepatotoxicity (단백질메칠화 반응과 간독성간의 상관관계)

  • 김재현;박창원;이주한;백윤기;문화회;홍성렬;이향우
    • Biomolecules & Therapeutics
    • /
    • v.2 no.1
    • /
    • pp.47-53
    • /
    • 1994
  • The methylation response as well as the level of methyl donor substance, 5-adenosyl-L-methionine (SAM) has been suggested to be related to hepatotoxicity including hepatocarcinogenesis. But direct correlation between protein methylation and hepatotoxicity has not been established to the present. To observe relationship between protein methylation and short-term hepatotoxicity induced by chemical substances, the activities of protein methylase I and II (PM I, PM II) were examined in cytosolic fraction of SD rat treated orally with acetaminophen(AA), $\alpha$-naphtyl-isothiocyanate (ANIT) and tetracycline (TC) that was known to produce necrosis, cholestasis and steatosis respectively. To evaluate the degree of hepatotoxicity induced by each chemicals, we observed the serum levels of indicative parameters and histopathological alteration. In AA treated group, the activities of PM I were increased at 6, 12 hours after administration, prior to the appearance of the hepatotoxicity by clinical parameters. It was suggested that the levels of PM I were related with the initial stage of hepatotoxic mechanism induced by AA. In ANIT treated group, though most of clinical parameters were significantly increased at 24, 48 hours after administration, the activity of PM I was not changed, indicating that ANIT induced hepatotoxicity was not coupled to protein methylation.

  • PDF

Role of Nitric Oxide as an Antioxidant in the Defense of Gastric Cells (위선세포의 항산화 방어기전으로의 Nitric Oxide의 역할)

  • Kim, Hye-Young;Lee, Eun-Joo;Kim, Kyung-Hwan
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.3
    • /
    • pp.389-397
    • /
    • 1996
  • Gatric mucosa is exposed to toxic, reactive oxygen species generated within the lumen. Nitric oxide protected acetaminophen-induced hepatotoxicity by maintaining glutathione homeostasis. The present study examined the role of nitric oxide in mediating hydrogen peroxide - induced damage to gastric cells. Hydrogen peroxide was generated by glucose oxidase acting on ${\beta}-D-glucose$. L-arginine, $N^G-nitro-L-arginine$ methyl ester, or $N^G-nitro-L-arginine$ were treated to the cells with glucose/glucose oxidase. Lipid peroxidation and nitrite release and cellular content of glutathione were determined. As a result, dose - dependent increase in lipid peroxide production as well as dose - dependent decrease in nitrite release and cellular glutathione content were observed in glucose/glucose oxidase - treated cells. Pretreatment of L-arginine, a substrate for nitric oxide synthase, prevented the increase of lipid peroxide production and the reduction of nitrite release as well as glutathione content. Inhibitors of nitric oxide synthase such as $N^G-nitro-L-arginine$ methyl ester and $N^G-nitro-L-arginine$ did not protect hydrogen peroxide - induced cell damage. In conclusion, nitric oxide protects gestric cells from hydrogen peroxide possibly by inhibiting lipid peroxidation and by preserving cellular glutathione stores.

  • PDF

Protective Effects of Chlorella vulgaris Extract on Carbon Tetrachloride-induced Acute Liver Injury in Mice

  • Kim, Hyun-Kyung;Li, Li;Lee, Hyeong-Seon;Park, Mi-Ok;Bileha, Dinesh;Li, Wei;Kim, Yong-Ho
    • Food Science and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.1186-1192
    • /
    • 2009
  • The purpose of this study was to evaluate the protective effects of Chlorella vulgaris extract (CVE) against carbon tetrachloride ($CCl_4$)-induced hepatotoxicity in mice. The mice received silymarin (100 mg/kg), intragastrieally (i.g.) and CVE (50, 100, and 200 mg/kg, i.g.), respectively, every other day, for 4 weeks before $CCl_4$ administration. Twenty-four hr after the administration of $CCl_4$, the serum and liver were analyzed. Our study found that in the CVE groups, aspartate aminotransferase (AST), and alanine aminotransferase (ALT) levels had decreased significantly and the tissue injury was notably diminished compared to the $CCl_4$ group. The antioxidant activities of CVE groups, such as superoxide dismutase (SOD), catalase, and glutathione (GSH), were significantly increased and the activity of nitric oxide synthase (NOS) was remarkably increased in a CVE concentration-dependent manner. In the CVE groups, cytochrome P450 2B1/2B2 (CYP2B1/2) content was decreased. These results indicate that CVE has protective effects against $CCl_4$-induced hepatotoxicity via stimulation of the antioxidant activity and nitric oxide (NO) production, and through inhibition of CYP2B1/2.

Effect of Water Extract from Artemisiae Argi Folium on Hepatotoxicity Caused by Acetaminophen and Acetaldehyde (Acetaminophen과 Acetaldehyde로 유발된 간세포독성에 대한 애엽 물추출물의 영향)

  • Park, Wan-Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.5
    • /
    • pp.1210-1214
    • /
    • 2008
  • The purpose of this study is to investigate the effect of water extract from Artemisiae Argi Folium (WAAF) on hepatotoxicity caused by acetaminophen (AAP) and acetaldehyde which are regarded as hepatotoxin. Artemisiae Argi Folium was known to have the antibacterial, immune-enhancing, and anticoagulative properties. In Korean Medicine, Artemisiae Argi Folium is supposed to be related with 'liver meridian' according to traditional medical theory. AAP and acetaldehyde reduce the intracellular production of hydrogen peroxide ($H_2O_2$) and nitric oxide (NO) production of human hepatocyte HepG2. The intracellular production of hydrogen peroxide ($H_2O_2$) was measured by dihydrorhodamine 123 (DHR) assay. NO production was measured with Griess test. WAAF increased the production of $H_2O_2$ and NO reduced by AAP and acetaldehyde in HepG2 cells. Therefore, It could be suggested that WAAF has the hepatoprotective activity against AAP and acetaldehyde.

Red Seaweed (Hypnea Bryodies and Melanothamnus Somalensis) Extracts Counteracting Azoxymethane-Induced Hepatotoxicity in Rats

  • Waly, Mostafa Ibrahim;Al Alawi, Ahmed Ali;Al Marhoobi, Insaaf Mohammad;Rahman, Mohammad Shafiur
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.12
    • /
    • pp.5071-5074
    • /
    • 2016
  • Background: Azoxymethane (AOM) is a well-known colon cancer-inducing agent in experimental animals via mechanisms that include oxidative stress in rat colon and liver tissue. Few studies have investigated AOM-induced oxidative stress in rat liver tissue. Red seaweeds of the genera Hypnea Bryodies and Melanothamnus Somalensis are rich in polyphenolic compounds that may suppress cancer through antioxidant properties, yet limited research has been carried out to investigate their anti-carcinogenic and antioxidant influence against AOM-induced oxidative stress in rat liver. Objective: This study aims to determine protective effects of red seaweed (Hypnea Bryodies and Melanothamnus Somalensis) extracts against AOM-induced hepatotoxicity and oxidative stress. Materials and Methods: Sprague-Dawley rats received intraperitoneal injections of AOM, 15 mg/kg body weight, once a week for two consecutive weeks and then orally administered red seaweed (100 mg/kg body-weight) extracts for sixteen weeks. At the end of the experiment all animals were overnight fasted then sacrificed and blood and liver tissues were collected. Results: AOM treatment significantly decreased serum liver markers and induced hepatic oxidative stress as evidenced by increased liver tissue homogenate levels of nitric oxide and malondialdehyde, decreased total antioxidant capacity and glutathione, and inhibition of antioxidant enzymes (catalase, glutathione peroxidase, glutathione S-transferase, glutathione reductase and superoxide dismutase). Both red seaweed extracts abolished the AOM-associated oxidative stress and protected against liver injury as evidenced by increased serum levels of liver function markers. In addition, histological findings confirmed protective effects of the two red seaweed extracts against AOM-induced liver injury. Conclusion: Our findings indicate that red seaweed (Hypnea Bryodies and Melanothamnus Somalensis) extracts counteracted oxidative stress-induced hepatotoxicity in a rat model of colon cancer.

Hepatotoxic Effects of 1-Furan-2-yl-3-pyridin-2-yl-propenone, a New Anti-Inflammatory Agent, in Mice

  • Jeon, Tae-Won;Kim, Chun-Hwa;Lee, Sang-Kyu;Shin, Sil;Choi, Jae-Ho;Kang, Won-Ku;Kim, Sang-Hyun;Kang, Mi-Jeong;Lee, Eung-Seok;Jeong, Tae-Cheon
    • Biomolecules & Therapeutics
    • /
    • v.17 no.3
    • /
    • pp.318-324
    • /
    • 2009
  • 1-Furan-2-yl-3-pyridin-2-yl-propenone (FPP-3) has recently been synthesized and characterized to have an anti-inflammatory activity through the inhibition of the production of nitric oxide. In the present study, adverse effects of FPP-3 on hepatic functions were determined in female BALB/c mice. When mice were administered with FPP-3 at 125, 250 or 500 mg/kg for 7 consecutive days orally, FPP-3 significantly increased absolute and relative weights of liver with a dose-dependent manner. In addition, FPP-3 administration dramatically increased the hepatotoxicity parameters in serum at 500 mg/kg, in association of hepatic necrosis. FPP-3 significantly induced several phase I enzyme activities. To elucidate the possible mechanism(s) involved in FPP-3 induced hepatotoxicity, we investigated the hepatic activities of free radical generating and scavenging enzymes and the level of hepatic lipid peroxidation. FPP-3 treatment significantly elevated the hepatic lipid peroxidation, measured as the thiobarbituric acid-reactive substance, and the activity of superoxide dismutase. Taken together, the present data indicated that reactive oxygen species might be involved in FPP-3-induced hepatotoxicity.

Inhibitory Effect of Jeungaektang Water Extract on Nitric Oxide and Cytokine Production in Lipopolysaccharide - activated RAW 264.7 Cells (증액탕(增液湯) 물추출물이 LPS로 유도된 RAW 264.7 cell에서의 Nitric Oxide 및 Cytokine에 미치는 영향)

  • Ahn, Sun-June;Lee, Jong-Rok;Kim, Sang-Chan;Jee, Seon-Young
    • Herbal Formula Science
    • /
    • v.15 no.1
    • /
    • pp.163-173
    • /
    • 2007
  • Jeungaektang (JAT) is the herbal formula, has the effect of moistening the dryness by activating lung Qi and by nourishing Yin, has being used for dryness syndromes. Generally the herbal formulae for moistening dryness are used for exogenous or endogenous dryness syndromes. JAT has been clinically used for the treatment of endogenous dryness syndromes. It is composed of Scrophulariae Radix. Rehmanniae Radix and Liriopis Tuber. Recent studies showed that JAT has a protective effect against $CCl_{4}-induced$ hepatotoxicity and anti-inflammatory effects against ear swelling of mouse induced by Crotonis Fructus. However, the effect of JAT on the immunological activity was rarely studied. Therefore, this study evaluated the effects of JAT the regulatory mechanism of nitric oxide (NO) and cytokines in the lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. After the treatment of JAT water extract, cell viability was measured by MTT assay, NO production was monitored by measuring the nitrite content in culture medium. Cyclooxygenase-2 (COX -2) and inducible nitric oxide synthase (iNOS) were determined by immunoblot analysis, and levels of cytokine were analyzed by sandwich immunoassays. Results provided evidence that JAT inhibited the production of nitrite and nitrate ($0.1{\sim}1.0$ mg/ml), iNOS ($0.1{\sim}1.0$ mg/ml), $interleukin-1{\beta}$ ( $0.1{\sim}1.0$ mg/ml) and tumor necrosis $factor-{\alpha}$ ($0.1{\sim}1.0$ mg/ml) in RAW 264.7 cells activated with LPS. Furthermore, JAT inhibited the expression of COX-2 expression and production of prostagladin E2 ($0.1{\sim}1.0$ mg/ml). These findings suggest that JAT can produce anti-inflammatory effect, which may play a role in adjunctive therapy in Gram-negative bacterial infections.

  • PDF