• Title/Summary/Keyword: Hertz model

Search Result 69, Processing Time 0.022 seconds

Impact Force Roconstruction and Impact Model Identification Using Inverse Dynamics of an Impacted Beam (역동역학을 이용한 충격을 받는 보의 충격력 복원 및 충격모델의 변수 파악)

  • 박형순;박윤식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.623-630
    • /
    • 1995
  • The impulse response functions (force-strain relations) for Euler-Bernoulli and Timoshenko beams are considered. The response of a beam to a transverse impact force is numerically obtained with the convolution approach using the impulse response function obtained by Laplace transform. Using this relation, the impact force history is determined in the time domain and results are compared with those from Hertz's contact law. The parameters of timpact force model are identified using the recovered force and compared with the Hertz's contact model. In order to verify the proposed algorithm, measurements were done using an impact hammer and a steel ball drop test and these results are also compared with the simulated values.

Development of Contact Module in AutoDyn7 Program (AutoDyn7 프로그램의 접촉모듈 개발)

  • 임성현;손정현;김광석;유완석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.152-159
    • /
    • 2001
  • In multibody dynamic analysis including contact and impact, there are two major analysis methods, i.e., piecewise analysis and continuous analysis. Modeling of contact phenomena is mainly classified with a Kelvin-Voigt model or a model of Hertz contact model. In this paper, a contact module fur AutoDyn7 program was developed and implemented. Both the Kelvin-Voigt model and a model of Hertz contact law were developed. The process of this module is composed of contact distinction and the contact force calculation. Two examples were verified and compared to the commercial program DADS.

  • PDF

Pounding Characteristics of a Bridge Superstructure on Rubber Bearings (교량 상부구조물의 탄성받침 설치에 따른 충돌특성 분석)

  • Choi, Hyoung-Suk;Kim, Jung-Woo;Gong, Yeong-I;Cheung, Jin-Hwan;Kim, In-Tae
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.13-21
    • /
    • 2011
  • Seismic structure pounding between adjacent superstructures may induce the destruction of pier and bridge superstructures and cause local damage that leads to the collapse of the whole bridge system. The pounding problem is related to the expansion of joints, gap distance and seismic response of the abutments. In this research, methods of the contact element approach, the linear spring model, the Kelvin-Voigt model and the Hertz model were studied to analyse the pounding characteristics. The shaking table test for a model specimen such as a bridge superstructure with elastomeric bearings was performed to evaluate the contact element approach methods. Relationships between the time history response from the numerical analysis results and the measured response from the shaking table test are compared. The experimental results were not well matched with the numerical analysis results using the existing pounding stiffness models. Therefore, in this study, coefficients are proposed to calculate the appropriate pounding stiffness ratio.

A Modeling of Impact Dynamics and its Application to Impact Force Prediction

  • Ahn Kil-Young;Ryu Bong-Jo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.422-428
    • /
    • 2005
  • In this paper, the contact force between two colliding bodies is modeled by using Hertz's force-displacement law and nonlinear damping function. In order to verify the appropriateness of the proposed contact force model, the drop type impact test is carried out for different impact velocities and different materials of the impacting body, such as rubber, plastic and steel. In the drop type impact experiment, six photo interrupters in series close to the collision location are installed to measure the velocity before impact more accurately. The characteristics of contact force model are investigated through experiments. The parameters of the contact force model are estimated using the optimization technique. Finally the estimated parameters are used to predict the impact force between two colliding bodies in opening action of the magnetic contactor, a kind of switch mechanism for switching electric circuits.

Dynamic Analysis of Engine Valve Train with Flexible Multibody Model Considering Contact between Components (부품간의 접촉을 고려한 유연체모델을 이용한 엔진 밸브트레인의 동특성 해석)

  • Hwang, Won-Gul;Sung, Won-Suk;Ahn, Ki-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.125-132
    • /
    • 2011
  • The dynamic characteristics of valve train are responsible for the dynamic performances of engine. We derived the equation of motion for 6 degrees of freedom model of the valve train. Computer model is also developed with flexible multibody model considering contact between components. The simulation results with these two models are compared with experimental results. We investigated the effect of the two spring models, TSDA (Translational Spring Damper Actuator) element and flexible body model, on the valve behavior and spring force. It is found that the dynamic behavior of the two models are not very different at normal operational velocity of the engine. By modeling contact between cam and tappet, the stress distributions of the cam were found. Using stress distribution obtained, contact width and contact stresses of the cam surface were calculated with Hertz contact theory.

Analysis of Particle Packing Process by Contact Model in Discrete Element Method (입자 패킹 공정에 대한 접촉모델별 이산요소법 해석)

  • Lyu, Jaehee;Park, Junyoung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.3
    • /
    • pp.59-65
    • /
    • 2019
  • In many industries, particle packing is adopted quite frequently. In the particle packing process, the Discrete Element Method (DEM) can analyze the multi-collision of particles efficiently. Two types of contact models are frequently used for the DEM. One is the linear spring model, which has the fastest calculation time, and the other is the Hertz-Mindlin model, which is the most frequently used contact model employing the DEM. Meanwhile, very tiny particles in the micrometer order are used in modern industries. In the micro length order, surface force is important to decreased particle size. To consider the effect of surface force in this study, we performed a simulation with the Hertz-Mindlin model and added the Johnson-Kendall-Roberts (JKR) theory depicting surface force with surface energy. In addition, three contact models were compared with several parameters. As a result, it was found that the JKR model has larger residual stress than the general contact models because of the pull-off force. We also validated that surface force can influence particle behavior if the particles are small.

Characterization of the dynamic behavior of a linear guideway mechanism

  • Chang, Jyh-Cheng;Wu, Shih-Shyn James;Hung, Jui-Pin
    • Structural Engineering and Mechanics
    • /
    • v.25 no.1
    • /
    • pp.1-20
    • /
    • 2007
  • Dynamic behaviors of the contact surface between ball and raceway in a guideway mechanism vary with the applied loads and hence affect the mechanical responses of machine tools. The study aims to investigate the nonlinear characteristics of dynamic behaviors at the rolling contact interface in linear guideway mechanisms. Firstly, analytical method was introduced to understand the contact behaviors based on Hertz contact theory in a point-to-point way. Then, the finite element approach with a three-dimensional surface-to-surface contact model and appropriate contact stiffness was developed to study the dynamic characteristics of such linear guideways. Finally, experiments with modal test were conducted to verify the significance of both the analytical and the numerical results. Results told that the finite element approach may provide significant predictions. The study results also concluded that the current nonlinear models based on Hertz's contact theory may accurately describe the contact characteristic of a linear guideway mechanism. In the modal analysis, it was told that the natural frequencies vary a little with different loading conditions; however, the mode shapes are changed obviously with the magnitude of applied loads. Therefore, the stiffness of contact interface needs to be properly adjusted during simulation which may affect the dynamic characteristics of the machine tools.

Cycloconverters with Resonant Circuits for Induction Motor Drives (기진회로를 이용한 사이크로콘버터에 의한 유도전동식 구동)

  • 김영석;조규민
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.2
    • /
    • pp.125-134
    • /
    • 1992
  • This paper presents a cycloconverter with an LC resonant circuit for an induction motor drive. The cycloconverter can keep input displacement factor at 1.0 by independently controlling real and reactive power under any load conditions. Furthermore it can keep power factor at about 1.0 since input and output current waveforms are nearly sinusoidal. Since it uses high frequency resonant circuit for commutation source, it can produce an output voltage of hundreds of hertz. Since it is also possible to make a system of high capacity using the cycloconverter, it is appropriate to drive motors with high speed and high capacity as well as general purpose motors, In this paper, we describe the operating principles of the cycloconverter and power control algorithms, and analyze its waveforms and present its characteristics. Expermental results are shown for the volts/hertz control of the induction motor and the validity of the proposed model is verified.

Dynamic Characteristics of Composite Plates Based On a Higher Order Theory Under Low-Velocity Impact (저속 충격시 고차이론을 이용한 복합 재료 판의 동적 특성)

  • 심동진;김지환
    • Journal of KSNVE
    • /
    • v.8 no.1
    • /
    • pp.132-138
    • /
    • 1998
  • The dynamic response of symmetric cross-ply and angle-ply composite laminated plates under impact loads is investigated using a higher order shear deformation theory. A modified Hertz law is used to predict the impact loads and a four node finite element is used to model the plate. By using a higer order shear deformation theory, the out-of-plane shear stresses, which can be a crucial factor in the failure of composite plates, are determined with significant accuracy. This is accomplished by using a stress recovery technique using the in-plane stresses. The results compared with previous investigations showed good agreement. It can be seen that this method of analyzing impact problems is more efficient than current three dimensional methods in terms of time and expense.

  • PDF

Kinetic Model on the Vacuum Deposition (眞空 蒸着에 관한 速度論的 모델)

  • Kim, Dae-Soo
    • Journal of the Korean institute of surface engineering
    • /
    • v.19 no.2
    • /
    • pp.51-58
    • /
    • 1986
  • A theoretical model was proposed to predict the rate of particles impinging on the negatively biased substrate and the total kinetic energy per unit time. The model takes into an account of kinetic theory based on Maxwell statistics and elementary plasma theory, incorporated with Hertz-Knudsen's evaporation theory. It is found that as the bias potential increases the ion flux and kinetic energy increases to a value above which the effect of potential is insignificant.

  • PDF