• Title/Summary/Keyword: Heterochromatin

Search Result 77, Processing Time 0.028 seconds

The Heterochromatin Protein 1 (HP1) Family: Put Away a Bias toward HP1

  • Kwon, So Hee;Workman, Jerry L.
    • Molecules and Cells
    • /
    • v.26 no.3
    • /
    • pp.217-227
    • /
    • 2008
  • Heterochromatin protein 1 (HP1) was first described in Drosophila melanogaster as a heterochromatin associated protein with dose-dependent effect on gene silencing. The HP1 family is evolutionarily highly conserved and there are multiple members within the same species. The multi-functionality of HP1 reflects its ability to interact with diverse nuclear proteins, ranging from histones and transcriptional co-repressors to cohesion and DNA replication factors. As its name suggests, HP1 is well-known as a silencing protein found at pericentromeres and telomeres. In contrast to previous views that heterochromatin is transcriptionally inactive; noncoding RNAs transcribed from heterochromatic DNA repeats regulates the assembly and function of heterochromatin ranging from fission yeast to animals. Moreover, more recent progress has shed light on the paradoxical properties of HP1 in the nucleus and has revealed, unexpectedly, its existence in the euchromatin. Therefore, HP1 proteins might participate in both transcription repression in heterochromatin and euchromatin.

Gold and silver plasmonic nanoprobes trace the positions of histone codes

  • Choi, Inhee;Song, Jihwan;Park, Hyunsung
    • BMB Reports
    • /
    • v.55 no.3
    • /
    • pp.111-112
    • /
    • 2022
  • We visualized the distribution of heterochromatin in a single nucleus using plasmonic nanoparticle-conjugated H3K9me3 and H3K27me3 antibodies. Due to distance-dependent plasmonic coupling effects between nanoprobes, their scattering spectra shift to longer wavelengths as the distance between heterochromatin histone markers reduced during oncogene-induced senescence (OIS). These observations were supported by simulating scattering profiles based on considerations of particle numbers, interparticle distances, and the spatial arrangements of plasmonic nanoprobes. Using this plasmon-based colourimetric imaging, we estimated changes in distances between H3K9me3 and H3K27me3 during the formation of senescence-associated heterochromatin foci in OIS cells. We anticipate that the devised analytical technique combined with high-spatial imaging and spectral simulation will eventually lead to a new means of diagnosing and monitoring disease progression and cellular senescence.

Chromosomal Polymorphism of Japanese Quail(Coturnix coturnix japonica) (일본산메추리(Coturnix coturnix japonica)의 염색체 다형현상)

  • 손시환
    • Korean Journal of Poultry Science
    • /
    • v.17 no.4
    • /
    • pp.275-280
    • /
    • 1990
  • Comosomal polymorphism involving constitutive heterochromatin has been reported in mu, pigs, mouse, horse, chicken and so on. The chromosomal polymorphism of Japanese quail which includes constitutive heterochromatin as well the chromosomes without banding treatment has now been found. Through the use of a general technique that permits visualization of chromosome morphology and heterochromatin, three chromosomal variants have been found among birds ; +/+ homozygous from, +/- heterozygous form and -/- homozygous form in chromosome 4. This variants appear to be common in the randombred population and stably inherited in a Mendelian fashion. These results suggest that the variants would be useful as chromosomal markers for various types of cytogenetic studies.

  • PDF

Prenatal diagnosis of interchromosomal insertion of Y chromosome heterochromatin in a family

  • Lee, Bom-Yi;Park, Ju-Yeon;Lee, Yeon-Woo;Oh, Ah-Rum;Lee, Shin-Young;Park, So-Yeon;Ryu, Hyun-Mee;Lee, Si-Won
    • Journal of Genetic Medicine
    • /
    • v.14 no.2
    • /
    • pp.62-66
    • /
    • 2017
  • Interchromosomal insertion of Y chromosome heterochromatin in an autosome was identified in a fetus and a family. A fetal karyotype was analyzed as 46,XX,dup(7)(?q22q21.1) in a referred amniocentesis at 16 weeks of gestation for advanced maternal age. In the familial karyotype analyses for identification of der(7), the mother, the first daughter and the maternal grandmother showed the same der(7) as the fetus's. CBG-banding was positive at 7q22 region of der(7) that indicated inserted material was originated from heterochromatin. The origin of heterochromatic insertion region in der(7) of the fetus and the mother was found in Yq12 region by fluorescent in situ hybridization with a DYZ1 probe. In the specific analysis of Y chromosomal heterochromatic region of ins(7;Y) of the mother, 15 sequence tagged sites from Yp11.3 region including SRY to Yq11.223 region was not detected. Final karyotypes of the mother, the first daughter and the maternal grandmother were reported as 46,XX,der(7)ins(7;Y)(q21.3;q12q12). All female carriers of ins(7;Y) in the family showed normal phenotype and the mother and the maternal grandmother were fertile. A healthy girl was born at term. We report a rare case of familial interchromosomal insertion of Y chromosome heterochromatin detected only in female family members with normal phenotype that was diagnosed prenatally.

karyotypic Analysis Based on Heterochromatin Distribution in Allium fistulosum and Allium ascalonicum (Allium fistulosum과 Allium ascalonicum에서 헤테로크로마틴 분포에 의한 핵형분석)

  • 서봉보
    • Journal of Plant Biology
    • /
    • v.18 no.3
    • /
    • pp.92-100
    • /
    • 1975
  • The present study demonstrates karyotype based on H-patterns of A.fistulosum and A. ascalonicum using Giemsa technique. The results obtained in this study are summarized as follows: I). Karyotypic analysis of A. fistulosum is 6VII+$JII^t+JII$ and that of A. ascalonicum collected from a local farm in the suberbs of Taegu city clearly heterozygous as $13V+J_1^t+J_2+i. ii$). The heterochromatin of both species is generally located distally in both arms of chromosomes and each chromosome type possesses some variations on H-patterns. iii). The percentage of heterochromatin to total chromosome length in cell is about 14.6% in A. fistulosum, 12.8% in A. ascalonicum. The number of bands is revealed about 38 in A. fistulosum and 33 in A. ascalonicum. Also in the amounts of chromocenters per nucleus, the former is somewhat more than the latter.

  • PDF

The Heterochromatin-1 Phosphorylation Contributes to TPA-Induced AP-1 Expression

  • Choi, Won Jun
    • Biomolecules & Therapeutics
    • /
    • v.22 no.4
    • /
    • pp.308-313
    • /
    • 2014
  • Activator protein-1 (AP-1) is an inducible transcription factor that contributes to the generation of chronic inflammation in response to oxidative and electrophilic stress. Previous studies have demonstrated that the PI3K/Akt1 pathway plays an important role in the transcriptional regulation of AP-1 expression. Although the histone post-translational modifications (PTMs) are assumed to affect the AP-1 transcriptional regulation by the PI3K/Akt pathway, the detailed mechanisms are completely unknown. In the present study, we show that heterochromatin 1 gamma ($HP1{\gamma}$) plays a negative role in TPA-induced c-Jun and c-Fos expression. We show that TPA-induced Akt1 directly phosphorylates $HP1{\gamma}$, abrogates its suppressive function and increases the interaction between histone H3 and 14-3-$3{\varepsilon}$. Collectively, these our data illustrate that the activation of PI3K/Akt pathway may play a permissive role in the recruitment of histone readers or other coactivators on the chromatin, thereby affecting the degree of AP-1 transcription.

The Effect of Laser Irridation on the Ultrastructure of Retina (Laser 조사가 망막의 미세구조에 미치는 영향)

  • Kim, Douk Hoon;Mun, Jung Hak
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.1 no.1
    • /
    • pp.15-22
    • /
    • 1996
  • The fine structure of retinal tissue was studied to investigate on effect of Laser irridation on the ICR mouse with electron microscope. The results obtained were as follows: 1. At the normal groups, the most retinal layers were a complex structure, consisting of several specific cells and nerve fiver. 2. In the increasing time of Laser irridation, each cell layer of retina was not uniform of the structure and band. The visual cells were severely heterochromatin swelling of cytoplasm, irregular shape & heterochromatin of nuclear, and disappear of some cytoplasm. The nucleus and nerve fiber of retinal layer was a very irregular shape, formation of vesicle, not identify of each intercellular boundary. The pigment epithelial cells were not an uniform, a large vesicle formation of cytoplasm, and a condensation & very irregular shape of nucleus.

  • PDF

BMI-1026 treatment can induce SAHF formation by activation of Erk1/2

  • Seo, Hyun-Joo;Park, Hye-Jeong;Choi, Hyung-Su;Hwang, So-Yoon;Park, Jeong-Soo;Seong, Yeon-Sun
    • BMB Reports
    • /
    • v.41 no.7
    • /
    • pp.523-528
    • /
    • 2008
  • BMI-1026 is a synthetic aminopyrimidine compound that targets cyclin dependent kinases (cdks) and was initially designed as a potential anticancer drug. Even though it has been well documented that BMI-1026 is a potent cdk inhibitor, little is known about the cellular effects of this compound. In this study, we examined the effects of BMI-1026 treatment on inducing premature senescence and then evaluated the biochemical features of BMI-1026-induced premature senescence. From these experiments we determined that BMI-1026 treatment produced several biochemical features of premature senescence and also stimulated expression of mitogen activated protein kinase (MAPK) family proteins. BMI-1026 treatment caused nuclear translocation of activated Erk1/2 and the formation of senescence associated heterochromatin foci in 5 days. The heterochromatin foci formation was perturbed by inhibition of Erk1/2 activation.

Interplay between Epigenetics and Genetics in Cancer

  • Choi, Jae Duk;Lee, Jong-Soo
    • Genomics & Informatics
    • /
    • v.11 no.4
    • /
    • pp.164-173
    • /
    • 2013
  • Genomic instability, which occurs through both genetic mechanisms (underlying inheritable phenotypic variations caused by DNA sequence-dependent alterations, such as mutation, deletion, insertion, inversion, translocation, and chromosomal aneuploidy) and epigenomic aberrations (underlying inheritable phenotypic variations caused by DNA sequence-independent alterations caused by a change of chromatin structure, such as DNA methylation and histone modifications), is known to promote tumorigenesis and tumor progression. Mechanisms involve both genomic instability and epigenomic aberrations that lose or gain the function of genes that impinge on tumor suppression/prevention or oncogenesis. Growing evidence points to an epigenome-wide disruption that involves large-scale DNA hypomethylation but specific hyper-methylation of tumor suppressor genes, large blocks of aberrant histone modifications, and abnormal miRNA expression profile. Emerging molecular details regarding the modulation of these epigenetic events in cancer are used to illustrate the alterations of epigenetic molecules, and their consequent malfunctions could contribute to cancer biology. More recently, intriguing evidence supporting that genetic and epigenetic mechanisms are not separate events in cancer has been emerging; they intertwine and take advantage of each other during tumorigenesis. In addition, we discuss the collusion between epigenetics and genetics mediated by heterochromatin protein 1, a major component of heterochromatin, in order to maintain genome integrity.