• Title/Summary/Keyword: High %24T_c%24 superconductor

Search Result 11, Processing Time 0.032 seconds

Fabrication and Characterization of BSCCO System High-Temperature Superconductor Tube Using Centrifigal Forming Process (원심성형법을 이용한 BSCCO계 고온초전도튜브 제조 및 특성 분석)

  • 박용민;장건익
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.9
    • /
    • pp.801-804
    • /
    • 2000
  • High-temperature superconductor of Bi-2212 system was fabricated by CFP(Centrifugal Forming Process). To make a uniform specimen slurry was prepared in the ratio of 7:3(powder : binder) and ball milled for 24 hours. Milled slurry was charged into a rotating mold with 450 rpm and dried at room temperature. Then the specimen was performed binder burn-out at 35$0^{\circ}C$ and heated for partial melting to 86$0^{\circ}C$. XRD analysis of most specimens were shown 2212 phase and observed a local plate shped microstructure with a well aligned c-axis direction from SEM images. Measured T$_{c}$(Critical temperature) was about 64 K.K.

  • PDF

Fabrication and Characterization of BSCCO System High-Temperature Superconductor Using Centrifugal Forming Process (원심성형법을 이용한 BSCCO계 고온초전도체 제조 및 특성 분석)

  • 박용민;장건익
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.189-192
    • /
    • 2000
  • High-temperature superconductor of Bi-2212 system was fabricated by CFP(centrifugal forming process). To make a uniform specimen slurry was prepared in the ratio of 7:3(powder:binder) and ball milled for 24 hours. Milled slurry was charged into a rotating mold with 450 rpm and dried at room temperature. Then the specimen was performed binder burn-out at 35$0^{\circ}C$ and heated for partial melting to 86$0^{\circ}C$. XRD analysis of most specimens were shown 2212 phase and observed a local plate shaped microstructure with a well aligned c-axis direction from SEM images. T$_{c}$(Critical temperature) of Bi-2212 was 64K.K.

  • PDF

Electronic Structures and Properties of the Charged Model Clusters Relating to High-$T_c$ Superconductor $Y{Ba_2}{Cu_3}{O_{7-x}}$

  • Paek, U-Hyon;Lee, Kee-Hag;Sung, Yong-Kiel;Lee, Wang-Ro
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.6
    • /
    • pp.606-612
    • /
    • 1991
  • We have carried out an extended Huckel calculation to rationalize the role of $CuO_3$ chains and the size effect of the charged model clusters for the following charged model culsters : ${{Cu_6}{O_{21}}^{28-},\;{{Cu_6}{O_{22}}^{30-}\;,{{Cu_9}{O_{30}}^{39-}\;,{{Cu_9}{O_{32}}^{43-}\;,{{Cu_{12}{O_{38}}^{48-}\;,{{Cu_{15}{O_{50}}^{65-}\;,{{Cu_{18}{O_{54}}^{66-}\;,{{Cu_{18}{O_{55}}^{68-}\;,{{Cu_{24}{O_{70}}^{84-}\;and\;{{Cu_{27}{O_{78}}^{93-}$ for high-$T_c$ superconductor $YBa_2Cu_3O_7$: ${{Cu_6}{O_{18}}^{22-}\;,{{Cu_9}{O_{26}}^{31-}}\;,{{Cu_{12}{O_{32}}^{36-}\;,{{Cu_{15}{O_{42}}^{49-}\;,{{Cu_{18}{O_{46}}^{50-}\;,{{Cu_{24}{O_{60}}^{64-}\;and\;{{Cu_{27}{O_{66}}^{69-}$ for insulator $YBa_2Cu_3O_6$. The results show that the electronic structures and properties of the charged model clusters relating to high-$T_c$ superconductor are very sensitive to the size change of the clusters with various environmental effects, wherease those of the charged model clusters for insulator $YBa_2Cu_3O_6$ are monotonous to the size change. The $CuO_3$ chains along the b-direction may yield cooperative electronic coupling with the $CuO_2$ layers in determining both conducting and superconducting properties of $YBa_2Cu_3O_{7-x}$ system.

Enhanced superconducting properties of MgB2 by doping the carbon quantum dots

  • K.C., Chung;S.H., Jang;Y.S., Oh;S.H., Kang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.4
    • /
    • pp.55-58
    • /
    • 2022
  • Carbon-based doping to MgB2 superconductor is the simplest approach to enhance the critical current densities under magnetic fields. Carbon quantum dots is synthesized in this work as a carbon provider to MgB2 superconductors. Polyvinyl Pyrrolidone is pyrolyzed and dispersed in dimethylfomamide solvent as a dopant to the mixture of Mg and B powders. Doped MgB2 bulk samples clearly show the decrease of a-axis lattice constant, grain refinements, and broadening of FWHM of diffraction peaks compared to un-doped MgB2 possibly due to the carbon substitution and/or boron vacancy at the boron site in MgB2 lattice. Also, high-field Jc for the doped MgB2 is enhanced significantly with the crossover about 3 T at 5 & 20 K when increasing the doping of carbon quantum dots.

Effect of the Ag Additive on the ${Bi_{1.84}}{Pb_{0.34}}{Sr_{1.91}}{Ca_{2.03}}{Cu_{3.06}}{O_{10+\delta}}$(110K Phase) High-$T_{c}$ Susperconductor (${Bi_{1.84}}{Pb_{0.34}}{Sr_{1.91}}{Ca_{2.03}}{Cu_{3.06}}{O_{10+\delta}}$(110K 상) 산화물 고온초전도체에 미치는 Ag 혼합효과)

  • 이민수;최봉수;최봉수
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.12
    • /
    • pp.1104-1109
    • /
    • 2001
  • Samples with the nominal composition, B $i_{1.84}$P $b_{0.34}$S $r_{1.91}$C $a_{2.03}$C $u_{3.06}$ $O_{10+}$$\delta$/ high $T_{c}$ superconductors containing As as an additive were fabricated by a solid-state reaction method. Samples with Ag of 10wt%, 30 wt% and 50 wt% each were sintered at 86$0^{\circ}C$~875$^{\circ}C$ for 24 hours. The structural characteristics, critical temperature and grain size with respect to Ag contents were analyzed by XRD(X-ray Diffraction) and SEM(Scanning Electron Microscope), respectively. As Ag contents increased, XRD peaks of g in Bi-2223 phase superconductors intensified and the proportion of the phase transition from Bi-2223 to Bi-2212 was increased.increased.

  • PDF

Superconducting Properties of the Mg-Bi(Pb)SrCaCuO (110 K Phase) Composite System focusing on the Microstructure (Mg가 혼합된 Bi(Pb)SrCaCuO(110 K 상) 고온초전도체의 미세구조에 따른 초전도 특성 변화에 대한 연구)

  • 이정화;최봉수;이민수
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.6
    • /
    • pp.530-538
    • /
    • 2003
  • Samples with the nominal composition, B $i_{1.84}$P $b_{0.34}$S $r_{1.91}$C $a_{2.03}$C $u_{3.06}$ $O_{10+}$$\delta$/ (110 K phase) high $T_{C}$ superconductors containing MgO as an additive were fabricated by a solid-state reaction method. Samples with 5~50 wt% MgO were sintered at 820~86$0^{\circ}C$ for 24 h. The structural characteristics, critical temperature and grain size of the samples with different MgO contents were analyzed by XRD and SEM. As the MgO content increased, the intensity of MgO peaks and ratio of Bi-2212 phase in superconductors were intensified and the proportion of the phase transition from Bi-2223 to Bi-2212 was increased.d.creased.d.

Effect of Mg Additive in the Bi1.84Pb0.34Sr1.91Ca2.03Cu3.06O10+δ(110 K phase) Superconductors (Bi1.84Pb0.34Sr1.91Ca2.03Cu3.06O10+δ(110 K 상)산화물 고온초전도체에 Mg 첨가에 따른 영향)

  • 이민수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.6
    • /
    • pp.522-531
    • /
    • 2003
  • Samples with the nominal composition, B $i_{1.84}$P $b_{0.34}$S $r_{1.91}$C $a_{2.03}$C $u_{3.06}$ $O_{10+{\delta}}$ high- $T_{c}$ superconductors containing MgO as an additive were fabricated by a solid-state reaction method. Samples with MgO of 5~30 wt% each were sintered at 820~86$0^{\circ}C$ for 24 hours. The structural characteristics, critical temperature, grain size and image of mapping with respect to MgO contents were analyzed by XRD(X-Ray Diffraction), SEM(Scanning Electron Microscope) and EDS(Energy dispersive X-ray spectrometer) respectively. As MgO contents increased, intensity of MgO Peaks and ratio of Bi-2212 phase in superconductors intensified and the proportion of the phase transition from Bi-2223 to Bi-2212 was increased.

Characteristics of HTS tube fabricated by centrifugal forming process (원심성형법으로 제조한 고온초전도 튜브의 특성 분석)

  • Jang, Gun-Eik;Park, Yong-Min
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.211-215
    • /
    • 2000
  • Bi-2212 HTS tube was fabricated by CFP(Centrifugal Forming Process). Slury was prepared in the mixing ratio of 8:2 between powder and binder and ball-milled for 24 hrs. Slurry was initially charged into the rotating mold with 300${\sim}$450 rpm and heated at the temperature ranges of 840${\sim}$860$^{\circ}$C for partial melting to finally obtain a uniformly textured tube shape. It was observed the plate-like grains with more than 20 ${\mu}$m were well oriented along the rotating axis and the measured T$_c$ was around 67K. In this paper we will discuss and analyze the tube characteristics depending on many different processing parameters such as, powder composition, binder mixing ratio between powder and binder, motor speed, heating temperature and etc.

  • PDF

Effects of neutron irradiation on superconducting critical temperatures of in situ processed MgB2 superconductors

  • Kim, C.J.;Park, S.D.;Jun, B.H.;Kim, B.G.;Choo, K.N.;Ri, H.C.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.1
    • /
    • pp.9-13
    • /
    • 2014
  • Effects of neutron irradiation on the superconducting properties of the undoped $MgB_2$ and the carbon(C)-doped $MgB_2$ bulk superconductors, prepared by an in situ reaction process using Mg and B powder, were investigated. The prepared $MgB_2$ samples were neutron-irradiated at the neutron fluence of $10^{16}-10^{18}n/cm^2$ in a Hanaro nuclear reactor of KAERI involving both fast and thermal neutron. The magnetic moment-temperature (M-T) and magnetization-magnetic field (M-H) curves before/after irradiation were obtained using magnetic property measurement system (MPMS). The superconducting critical temperature ($T_c$) and transition width were estimated from the M-T curves and critical current density ($J_c$) was estimated from the M-H curves using a Bean's critical model. The $T_cs$ of the undoped $MgB_2$ and C-doped $MgB_2$ before irradiation were 36.9-37.0 K and 36.6-36.8 K, respectively. The $T_cs$ decreased to 33.2 K and 31.6 K, respectively after irradiation at neutron fluence of $7.16{\times}10^{17}n/cm^2$, and decreased to 22.6 K and 24.0 K, respectively, at $3.13{\times}10^{18}n/cm^2$. The $J_c$ cross-over was observed at the high magnetic field of 5.2 T for the undoped $MgB_2$ irradiated at $7.16{\times}10^{17}n/cm^2$. The $T_c$ and $J_c$ variation after the neutron irradiation at various neutron fluences were explained in terms of the defect formation in the superconducting matrix by neutron irradiation.