• Title/Summary/Keyword: High Gain

Search Result 3,939, Processing Time 0.031 seconds

Design of a Adaptive High-Gain Observer for Speed-Sensorless Control of DC Servo Motor (센서없는 직류서보전동기의 속도 제어를 위한 적응 고이득 관측기 설계)

  • 김상훈;김낙교
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.12
    • /
    • pp.663-670
    • /
    • 2003
  • This paper deals with speed control of DC servo motor using a Adaptive high gain obserber. In this parer, the gain of the observer is properly set up using the fuzzy control and adaptive high gain observer that have a superior transient characteristic and is easy to implement compared the existing method is designed. In order to verify the performance of the Adaptive high gain observer which is proposed in this paper, it is compared estimate performance of High-gain Observer and Adaptive High Gain Observer with the computer simulation. Effectiveness of the proposed high gain observer is proved from the experiment to compare the case with a speed sensor to the case with Adaptive high gain observer in the speed control of DC servo motor.

Control of AC Servo Motor Using Adaptive Fuzzy High Gain Observer (적응 퍼지 고이득 관측기를 이용한 교류 서보 전동기 제어)

  • Kim, Sang-Hoon;Yun, Kwang-Ho;Ko, Bong-Woon;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.53-55
    • /
    • 2004
  • This paper deals with speed control of AC servo motor using a Adaptive fuzzy high gain observer. In this parer, the gain of the observer is properly set up using the fuzzy control and adaptive high gain observer that have a superior transient characteristic and is easy to implement compared the existing method is designed. In order to verify the performance of the Adaptive fuzzy high gain observer which is proposed in this paper, it is compared estimate performance of High-gain Observer and Adaptive High Gain Observer with the computer simulation. Effectiveness of the proposed high gain observer is proved from the experiment to compare the case with a speed sensor to the case with Adaptive fuzzy high gain observer in the speed control of AC servo motor.

  • PDF

Design of an Adaptive High-Gain Observer for Speed-Sensorless Control of Motor (전동기 센서리스제어를 위한 적응 고이득 관측기 설계)

  • Kim, Sang-Hun;Yoon, Kwang-Ho;Nam, Moon-Hyun;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.484-487
    • /
    • 2003
  • In this paper describes a design of Adaptive high gain observer. The gain of the observer is properly set up using the fuzzy control and adaptive high gain observer that have a superior transient characteristic and is easy to implement compared the existing method is designed. In order to verify the performance of the Adaptive high gain observer which is proposed in this paper, it is compared estimate performance of High-gain Observer and Adaptive High Gain Observer with the computer simulation. Effectiveness of the proposed high gain observer is proved from the simulation to compare the case with a speed sensor to the case with Adaptive high gain observer in the speed control of DC servo motor.

  • PDF

Speed-Sensorless Control of DC Servo Motor Using a High Gain Observer (고이득 관측기를 이용한 센서없는 직류서보전동기의 속도 제어)

  • 김상훈;김낙교
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.10
    • /
    • pp.583-590
    • /
    • 2003
  • This paper deals with speed control of DC servo motor using a high gain obserber. It was designed to estimate rotor speed of DC servo motor and it carries out speed control from the feedback of the estimated speed signal. Also, PI controller was used in speed controller. In order to verify the performance of the high gain observer which is proposed in this paper, it is compared estimate performance of Luenberger Observer and High Gain Observer with the computer simulation. Effectiveness of the proposed high gain observer is proved from the experiment to compare the case with a speed sensor to the case with high gain observer in the speed control of DC servo motor.

Analysis and Design of Function Decoupling High Voltage Gain DC/DC Converter

  • Wei, Yuqi;Luo, Quanming;Lv, Xingyu;Sun, Pengju;Du, Xiong
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.380-393
    • /
    • 2019
  • Traditional boost converters have difficulty realizing high efficiency and high voltage gain conversion due to 1) extremely large duty cycles, 2) high voltage and current stresses on devices, and 3) low conversion efficiency. Therefore, a function decoupling high voltage gain DC/DC converter composed of a DC transformer (DCX) and an auxiliary converter is proposed. The role of DCX is to realize fixed gain conversion with high efficiency, whereas the role of the auxiliary converter is to regulate the output voltage. In this study, different forms of combined high voltage gain converters are compared and analyzed, and a structure is selected for the function decoupling high voltage gain converter. Then, topologies and control strategies for the DCX and auxiliary converter are discussed. On the basis of the discussion, an optimal design method for circuit parameters is proposed, and design procedures for the DCX are described in detail. Finally, a 400 W experimental prototype based on the proposed optimal design method is built to verify the accuracy of the theoretical analysis. The measured maximum conversion efficiency at rated power is 95.56%.

A High-Gain Microstrip Patch Array Antenna Using a Superstrate Layer

  • Choi, Won-Kyu;Cho, Yong-Heui;Pyo, Cheol-Sik;Choi, Jae-Ick
    • ETRI Journal
    • /
    • v.25 no.5
    • /
    • pp.407-411
    • /
    • 2003
  • A dielectric superstrate layer above a microstrip patch antenna has remarkable effects on its gain and resonant characteristics. This paper experimentally investigates the effect of a superstrate layer for high gain on microstrip patch antennas. We measured the gain of antennas with and without a superstrate and found that the gain of a single patch with a superstrate was enhanced by about 4 dBi over the one without a superstrate at 12 GHz. The impedance bandwidths of a single patch with and without a superstrate for VSWR < 2 were above 11%. The designed $2{\times}8$ array antenna using a superstrate had a high gain of over 22.5 dB and a wide impedance bandwidth of over 17%.

  • PDF

A Novel Non-Isolated Buck Boost Converter with High Voltage Gain and High Efficiency Characteristics (고변압비와 고효율 특성을 가진 새로운 비절연형 벅부스트 컨버터)

  • Tran, Manh Tuan;Amin, Saghir;Choi, Woojin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.5
    • /
    • pp.319-326
    • /
    • 2019
  • The use of high-voltage gain converters is essential for distributed power generation systems with renewable energy sources, such as fuel and solar cells, due to their low-voltage characteristics. In this study, a novel high-voltage gain non-isolated buck boost converter topology is proposed to cope with the need of a high-voltage conversion ratio without the transformer for the renewable energy sources. Given that the proposed topology utilizes the cascode structure, the voltage gain and the efficiency are higher than those of other conventional non-isolated converters. To demonstrate the feasibility of the proposed topology, the operation principle is presented, and the steady-state characteristics are analyzed in detail. The validity of the proposed converter is verified by experiments with a 400 W prototype converter.

26GHz 40nm CMOS Wideband Variable Gain Amplifier Design for Automotive Radar (차량용 레이더를 위한 26GHz 40nm CMOS 광대역 가변 이득 증폭기 설계)

  • Choi, Han-Woong;Choi, Sun-Kyu;Lee, Eun-Gyu;Lee, Jae-Eun;Lim, Jeong-Taek;Lee, Kyeong-Kyeok;Song, Jae-Hyeok;Kim, Sang-Hyo;Kim, Choul-Young
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.408-412
    • /
    • 2018
  • In this paper, a 26GHz variable gain amplifier fabricated using a 40nm CMOS process is studied. In the case of an automobile radar using 79 GHz, it is advantageous in designing and driving to drive down to a low frequency band or to use a low frequency band before up conversion rather than designing and matching the entire circuit to 79 GHz in terms of frequency characteristics. In the case of a Phased Array System that uses time delay through TTD (True Time Delay) in practice, down conversion to a lower frequency is advantageous in realizing a real time delay and reducing errors. For a VGA (Variable Gain Amplifier) operating in the 26GHz frequency band that is 1/3 of the frequency of 79GHz, VDD : 1V, Bias 0.95V, S11 is designed to be <-9.8dB (Mea. High gain mode) and S22 < (Mea. high gain mode), Gain: 2.69dB (Mea. high gain mode), and P1dB: -15 dBm (Mea. high gain mode). In low gain mode, S11 is <-3.3dB (Mea. Low gain mode), S22 <-8.6dB (Mea. low gain mode), Gain: 0dB (Mea. low gain mode), P1dB: -21dBm (Mea. Low gain mode).

Robust High Gain Adaptive Output Feedback Control for Nonlinear Systems with Uncertain Nonlinearities in Control Input Term

  • Michino, Ryuji;Mizumoto, Ikuro;Iwai, Zenta;Kumon, Makoto
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.19-27
    • /
    • 2003
  • It is well known that one can easily design a high-gain adaptive output feedback control for a class of nonlinear systems which satisfy a certain condition called output feedback exponential passivity (OFEP). The designed high-gain adaptive controller has simple structure and high robustness with regard to bounded disturbances and unknown order of the controlled system. However, from the viewpoint of practical application, it is important to consider a robust control scheme for controlled systems for which some of the assumptions of output feedback stabilization are not valid. In this paper, we design a robust high-gain adaptive output feedback control for the OFEP nonlinear systems with uncertain nonlinearities and/or disturbances. The effectiveness of the proposed method is shown by numerical simulations.

A 1.5V CMOS High Frequency Operational Amplifier for High Frequency Signal Processing Systems. (고주파 신호처리 시스템을 위한 1.5V CMOS 고주파 연산증폭기)

  • 박광민;김은성;김두용
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.1117-1120
    • /
    • 2003
  • In this paper, a 1.5V CMOS high frequency operational amplifier for high frequency signal processing systems is presented. For obtaining the high gain and the high unity gain frequency with the 1.5V supply voltage, the op-amp is designed with simple two stages which are consisting of the rail-to-rail differential input stage and the class-AB output stage. The designed op-amp operates with the 1.5V supply voltage, and shows well the push-pull class-AB operation. The simulation results show the DC open loop gain of 77dB and the unity gain frequency of 100MHz for the 1㏁ ┃ 10pF load. When the resistive load R$_1$. is varied from 1㏁ to 1 ㏀, the DC open loop gain decreases by only 4dB.

  • PDF