• Title/Summary/Keyword: High Power Laser

Search Result 902, Processing Time 0.029 seconds

Target alignment method of inertial confinement fusion facility based on position estimation

  • Lin, Weiheng;Zhu, Jianqiang;Liu, Zhigang;Pang, Xiangyang;Zhou, Yang;Cui, Wenhui;Dong, Ziming
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3703-3716
    • /
    • 2022
  • Target alignment technology is one of the most critical technologies in laser fusion experiments and is an important technology related to the success of laser fusion experiments. In this study, by combining the open-loop and closed-loop errors of the target alignment, the Kalman state observer is used to estimate the position of the target, which improves the observation precision of the target alignment. Then the optimized result is used to guide the alignment of the target. This method can greatly optimize the target alignment error and reduce uncertainty. With the improvement of the target alignment precision, it will greatly improve the reliability and repeatability of the experiments' results, thereby improving the success rate of the experiments.

High power CO$_{2}$laser beam welding of ASIA 316 stainless steel

  • 김재도;조용무
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.321-327
    • /
    • 1991
  • High power laser beams are used in a wide variety of materials processing applications such as cutting, welding, drilling and surface treatment. The CO$\sub$2/ laser is increasingly used in laser beam welding because of the highly potential advantages. High power laser welding is a high energy density, no filler metals and low heat input process to join metals. As the comparison with the conventiona welding, precision work and good fit-up to join the metals are required and maintenance is expensive at present. The principal variables of laser beam welding are the laser beam power, travel speed and bean spot size. The penetration depth during laser beam welding is directly related to the power density of the laser beam. Generally, for a constant beam size, the penetration depth increases with increasing laser beam power.

A Unified Analysis of Low-Power and High-Power Density Laser Welding Processes with Evolution of Free Surface (자유표면변형을 고려한 저에너지밀도 및 고에너지밀도 레이저 용접공정 통합 해석)

  • Ha Eung-Ji;Kim Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.10 s.241
    • /
    • pp.1111-1118
    • /
    • 2005
  • In this study, a unified numerical investigation has been performed on the evolution of weld pool and key-hole geometry during low-power and high-power density laser welding. Unsteady phase-change heat transfer and fluid flow with the surface tension are examined. The one-dimensional vaporization model is introduced to model the overheated surface temperature and recoil pressure during high-power density laser welding. It is shown that Marangoni convection in the weld pool is dominant at low-power density laser welding, and the keyhole with thin liquid layer and the hump are visible at high-power density laser welding. It is also shown that the transition from conduction welding to penetration welding fur iron plate exists when the laser power density is about $10^6W/Cm^2$.

Design of online damage images detection system for large-aperture mirrors of high power laser facility based on wavefront coding technology

  • Fang, Wang;Qinxiao, Liu;Dongxia, Hu;Hongjie, Liu;Tianran, Zheng
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2899-2908
    • /
    • 2021
  • The laser transport system of the high power laser facility is mainly composed of large-aperture laser transport mirrors (TMs). Obtaining the high-resolution online damage images during the operation, which is of great significance for operating safely of the mirrors and the facility. Based on wavefront coding, pan-tilt scanning and image stitching technologies, an online laser-damage images detection system is designed, and it can achieve high-precision detection of surface characteristics of large-aperture laser transport mirrors. The preliminary simulation proves that the system can solve the depth of field matching problem caused by pan-tilt tilt imaging and achieve higher resolution.

Study on a New ACF Bonding Methods in LCD Module Using a High Power Diode Laser (다이오드레이저를 이용한 디스플레이 모듈 내 이방성 전도 필름(ACF) 접합 기술에 관한 연구)

  • Ryu K. H.;Seon M. H.;Nam G. J.;Kwak N. H.
    • Laser Solutions
    • /
    • v.8 no.3
    • /
    • pp.21-26
    • /
    • 2005
  • A bonding process between tape-carrier package and a glass panel with anisotropic conductive film (ACF) has been investigated by making use of high power diode laser as a heat source for cure. The results from modeling of process and from optical properties of layers showed that heat absorbed from polyimide film surface and ACF layer is dominant source of curing during laser illumination. Laser ACF bonding has better bonding quality than conventional bonding in view of peel strength, flatness, pressure unbalance and processing time. New ACF bonding processes by making use of high power diode laser are proposed.

  • PDF

Development of high repetition rate and high power pulsed Nd:YAG laser power supply using ZCS resonant converter (ZCS공진형 컨버터를 적용한 고반복 대출력 펄스형 Nd:YAG 레이저 전원장치 개발)

  • Joe, K.Y.;Kim, E.S.;Byun, Y.B.;Kim, H.J.;Park, J.M.;Lee, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.514-517
    • /
    • 1996
  • Zero current switching(ZCS) series resonant converter is used to control laser power density in a pulsed Nd:YAG laser power supply. The high power and high repetition rate paused Nd:YAG laser is designed and fabricated to control current pulse width and pulse repetition rate in the double elliptical laser oscillator. In order to find out operational characteristics of pulsed Nd:YAG laser, the electrical properties of driving power supply and laser output power are investigated and experimented by changing of the current pulse width from 200uS to 350uS(step 50uS) and pulse repetition rate range of 500pps(pulse per second) to 1150pps. From that result, we obtaind maximum efficiency of 1.83% and maximum laser output or 220W at the condition of 350 uS and 1150pps with one Nd:YAG rod), and obtained that of more than 400W with two laser head connecting series.

  • PDF

Development of CO Laser-Arc Hybrid Welding Process

  • Lee, Se-Hwan
    • Laser Solutions
    • /
    • v.5 no.3
    • /
    • pp.15-20
    • /
    • 2002
  • The principal obstacle to selection of a laser processing method in production is its relatively high equipment cost and the natural unwillingness of production supervision to try something new until it is thoroughly proven. The major objective of this work is focused on the combined features of gas tungsten arc and a low-power cold laser beam. In this work, the laser beam from a 7 watts carbon monoxide laser was combined with electrical discharges from a short-pulsed capacitive discharge GTA welding power supply. When the low power CO laser beam passes through a special composition shielding gas, the CO molecules in the gas absorbs the radiation, and ionizes through a process blown as non-equilibrium, vibration-vibration pumping. The resulting laser-induced plasma(LIP) was positioned between various configurations of electrodes. The high-voltage impulse applied to the electrodes forced rapid electrical breakdown between the electrodes. Electrical discharges between tungsten electrodes and aluminum sheet specimens followed the ionized path provided by LIP. The result was well-focused melted spots.

  • PDF

Study on High Speed Laser Cutting of Rigid Flexible Printed Circuit Board by using UV Laser with Nano-second Pulse Width (자외선 나노초 펄스 레이저를 이용한 경연성(Rigid Flexible) 인쇄전자회로기판(Printed Circuit Board) 고속 절단에 관한 연구)

  • Bae, Han-Sung;Park, Hee-Chun;Ryu, Kwang-Hyun;Nam, Gi-Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.20-24
    • /
    • 2010
  • High speed cutting processes of rigid flexible printed circuit board by making use of high power UV laser with nano-second pulse width have been proposed and investigated experimentally. Also robust laser cutting system has been designed and developed in order to obtain a good cutting quality of rigid and flexible PCB with multi-layers (2-6 layers). Power controller module developed for ourselves is adapted to control the laser output power in the range less than 1%. The systems show the good performance of cutting speed, cutting width and cutting accuracy, respectively. Especially we have confirmed that the short circuit problem due to the carbonized contamination occurred in cross section of multi-layers by thermal effect of high power laser has been improved largely by using multi-pass cutting process with low power and high speed.