• 제목/요약/키워드: High Resolution Satellite Image

검색결과 624건 처리시간 0.025초

GCP(GROUND CONTROL POINT) FOR AUTOMATION OF THE HIGH RESOLUTION SATELLITE IMAGE REVISION

  • Jo, Myung-Hee;Jung, Yun-Jae
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.219-222
    • /
    • 2007
  • Today, use of high resolution satellite image with at least 1m resolution is expanding into many more areas including forest, river way, city, seashore and so forth for disaster prevention. Interest in this medium is increasing among the general public due to the roll-out to the private sector as Google earth, Virtual Earth and so forth. However, pre-processing process that revises the geometrical distortion that result at the time of photographing is required in order to use high resolution satellite image. The purpose of this research is to search the most accurate GCP(Ground Control Point) information acquisition method that is used for the revision of high resolution satellite image's geometrical distortion through automated processing. Through this, it is possible to contribute to increasing the level of accuracy at the time of high resolution satellite image revision and to secure promptness.

  • PDF

고해상도 위성 영상데이터를 이용한 지형요소 추출에 관한 연구 (A Study on Feature Extraction Using High-Resolution Satellite Image Data)

  • 김상철;신석효;안기원;이건기;서두천
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2003년도 춘계학술발표회 논문집
    • /
    • pp.181-185
    • /
    • 2003
  • Recently, in accordance with supplying high-resolution satellite images which as IKONOS, KVR-1000, and Quick Bird, the use of satellite images have increased in the study which extraction of features from high-resolution satellite images is becoming a new research focus. In this study, using generally involves such as image segmentation, filtering and sobel operator and thinning in image processing for extraction of feature from satellite image. We apply this method to extraction of feature which need to the revision of map from high-resolution IKONOS satellite image data, we verified the capability of extraction of feature and application using satellite image and proposed a plan for the study in the future.

  • PDF

Matching Performance Analysis of Upsampled Satellite Image and GCP Chip for Establishing Automatic Precision Sensor Orientation for High-Resolution Satellite Images

  • Hyeon-Gyeong Choi;Sung-Joo Yoon;Sunghyeon Kim;Taejung Kim
    • 대한원격탐사학회지
    • /
    • 제40권1호
    • /
    • pp.103-114
    • /
    • 2024
  • The escalating demands for high-resolution satellite imagery necessitate the dissemination of geospatial data with superior accuracy.Achieving precise positioning is imperative for mitigating geometric distortions inherent in high-resolution satellite imagery. However, maintaining sub-pixel level accuracy poses significant challenges within the current technological landscape. This research introduces an approach wherein upsampling is employed on both the satellite image and ground control points (GCPs) chip, facilitating the establishment of a high-resolution satellite image precision sensor orientation. The ensuing analysis entails a comprehensive comparison of matching performance. To evaluate the proposed methodology, the Compact Advanced Satellite 500-1 (CAS500-1), boasting a resolution of 0.5 m, serves as the high-resolution satellite image. Correspondingly, GCP chips with resolutions of 0.25 m and 0.5 m are utilized for the South Korean and North Korean regions, respectively. Results from the experiment reveal that concurrent upsampling of satellite imagery and GCP chips enhances matching performance by up to 50% in comparison to the original resolution. Furthermore, the position error only improved with 2x upsampling. However,with 3x upsampling, the position error tended to increase. This study affirms that meticulous upsampling of high-resolution satellite imagery and GCP chips can yield sub-pixel-level positioning accuracy, thereby advancing the state-of-the-art in the field.

고해상도 모의위성영상 제작에 관한 연구 (A Study on the Ceneration of Simulated High-Resolution Satellite Images)

  • 윤영보;조우석;박종현;이종훈
    • 대한원격탐사학회지
    • /
    • 제18권6호
    • /
    • pp.327-336
    • /
    • 2002
  • 다양한 분야에서 고해상도 위성영상의 활용도가 높아짐에 따라 많은 고해상도 인공위성이 발사되고 있으며 발사예정에 있다. 본 논문은 DEM과 항공사진영상을 이용하여 임의의 궤도정보와 자세정보를 가지는 인공위성에 대하여 모의위성영상을 제작할 수 있는 두 가지 방법을 제안하였다. 제작된 모의위성영상의 센서모델에서 자세는 변화가 없는 것으로 가정하였고, 투영중심의 위치는 위성의 진행방향에 따라 변화하는 모델을 사용하였다. 또한 자세와 위치에 변화를 준 모의위성영상을 제작하여 입체시 가능성을 실험하였으며, 제작된 모의위성영상의 정확도를 검증하기 위해 공간전방 교회를 이용하여 검증하였다.

Road Extraction Based on Watershed Segmentation for High Resolution Satellite Images

  • Chang, Li-Yu;Chen, Chi-Farn
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.525-527
    • /
    • 2003
  • Recently, the spatial resolution of earth observation satellites is significantly increased to a few meters. Such high spatial resolution images definitely will provide lots of information for detail-thirsty remote sensing users. However, it is more difficult to develop automated image algorithms for automated image feature extraction and pattern recognition. In this study, we propose a two-stage procedure to extract road information from high resolution satellite images. At first stage, a watershed segmentation technique is developed to classify the image into various regions. Then, a knowledge is built for road and used to extract the road regions. In this study, we use panchromatic and multi-spectral images of the IKONOS satellite as test dataset. The experiment result shows that the proposed technique can generate suitable and meaningful road objects from high spatial resolution satellite images. Apparently, misclassified regions such as parking lots are recognized as road needed further refinement in future research.

  • PDF

High-Resolution Satellite Image Super-Resolution Using Image Degradation Model with MTF-Based Filters

  • Minkyung Chung;Minyoung Jung;Yongil Kim
    • 대한원격탐사학회지
    • /
    • 제39권4호
    • /
    • pp.395-407
    • /
    • 2023
  • Super-resolution (SR) has great significance in image processing because it enables downstream vision tasks with high spatial resolution. Recently, SR studies have adopted deep learning networks and achieved remarkable SR performance compared to conventional example-based methods. Deep-learning-based SR models generally require low-resolution (LR) images and the corresponding high-resolution (HR) images as training dataset. Due to the difficulties in obtaining real-world LR-HR datasets, most SR models have used only HR images and generated LR images with predefined degradation such as bicubic downsampling. However, SR models trained on simple image degradation do not reflect the properties of the images and often result in deteriorated SR qualities when applied to real-world images. In this study, we propose an image degradation model for HR satellite images based on the modulation transfer function (MTF) of an imaging sensor. Because the proposed method determines the image degradation based on the sensor properties, it is more suitable for training SR models on remote sensing images. Experimental results on HR satellite image datasets demonstrated the effectiveness of applying MTF-based filters to construct a more realistic LR-HR training dataset.

Designation of Buildings in Urban Area of High-resolution Satellite Image Using Generalized Hough Transform

  • Lee, Seung-Hee;Park, Sung-Mo;Lee, Joon-Whoan;Kim, Joon-Cheol
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.156-158
    • /
    • 2003
  • Analysis of high-resolution satellite image becomes important for cartography, surveillance, and remote sensing. However, there are lots of problems to be solved for automatic analysis of high-resolution satellite image especially in urban area. The problems are originated from the increased complexity due to the unnecessary details and shadows, and time-varying illuminations. Because of such obstacles, it seems impossible to make automatic analysis. This paper proposes a way of change detection of buildings in urban area by using digital vector map. The proposed way makes the buildings on the vector map parameterized, and searches them in the preprocessed high-resolution image by using generalized Hough transform. The searched building objects are overlaid on the satellite image. The overlaid image can help to detect the change of building rapidly.

  • PDF

DEVELOPMENT OF HIGH-RESOLUTION SATELLITE IMAGE PROCESSING SYSTEM BY USING CBD

  • Yoon, Chang-Pak;Seo, Ji-Hoon;Kim, Kyung-Ok
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.49-52
    • /
    • 2002
  • High-resolution satellite image processing software should be able to ensure accurate, fast, compact data processing in offline or online environment. In this paper, component software for high-resolution satellite image processing is developed using OpenGIS components and real-time data processing architecture. The developed component software is composed of three major packages, which are data provide package, user interface package, and fast data processing package. The data provider package encodes and decodes diverse image/vector data formats and give identical data access methods to developers. The user interface package supports menus, toolbars, dialogs, and events to use easier. The fast data processing package follows the OpenGIS's data processing standards, which can deal with several processors as components with standard procedural functionalities.

  • PDF

Fusion Techniques Comparison of GeoEye-1 Imagery

  • Kim, Yong-Hyun;Kim, Yong-Il;Kim, Youn-Soo
    • 대한원격탐사학회지
    • /
    • 제25권6호
    • /
    • pp.517-529
    • /
    • 2009
  • Many satellite image fusion techniques have been developed in order to produce a high resolution multispectral (MS) image by combining a high resolution panchromatic (PAN) image and a low resolution MS image. Heretofore, most high resolution image fusion techniques have used IKONOS and QuickBird images. Recently, GeoEye-1, offering the highest resolution of any commercial imaging system, was launched. In this study, we have experimented with GeoEye-1 images in order to evaluate which fusion algorithms are suitable for these images. This paper presents compares and evaluates the efficiency of five image fusion techniques, the $\grave{a}$ trous algorithm based additive wavelet transformation (AWT) fusion techniques, the Principal Component analysis (PCA) fusion technique, Gram-Schmidt (GS) spectral sharpening, Pansharp, and the Smoothing Filter based Intensity Modulation (SFIM) fusion technique, for the fusion of a GeoEye-1 image. The results of the experiment show that the AWT fusion techniques maintain more spatial detail of the PAN image and spectral information of the MS image than other image fusion techniques. Also, the Pansharp technique maintains information of the original PAN and MS images as well as the AWT fusion technique.

구조-텍스처 분할을 이용한 위성영상 융합 프레임워크 (Image Fusion Framework for Enhancing Spatial Resolution of Satellite Image using Structure-Texture Decomposition)

  • 유대훈
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제25권3호
    • /
    • pp.21-29
    • /
    • 2019
  • 본 논문에서는 구조-텍스처 분할 기법을 기반으로 위성영상을 분할 융합하여 공간 해상도를 개선시키는 프레임워크를 제시한다. 위성영상은 센서가 감지하는 파장에 따라 다양한 공간해상도를 가진다. 전정 영상 (panchromatic image)은 일반적으로 높은 공간해상도를 가지지만 단일 흑백컬러를 가지고 있는 반면, 다중분광 영상 (multi-spectral image)나 적외선 영상은 전정 영상에 비해 낮은 공간해상도를 가지지만 다양한 분광 밴드정보와 열 정보를 가지고 있다. 본 논문에서는 다중분광 영상이나 적외선 영상의 공간 해상도를 향상시키기 위해 영상의 디테일이 텍스처 영상에만 존재한다는 것에 착안하여 본 프레임워크를 고안하였다. 고안된 프레임워크에서는 저해상도 영상과 고해상도 영상이 구조 영상과 텍스처 영상으로 분할된 뒤, 저해상도 구조영상은 고해상도 구조 영상을 참조하여 가이디드 필터링 된다. 구조-텍스처 영상 모델에 따라 필터링된 저해상도 영상의 구조 영역과 고해상도 영상의 텍스처 영역을 픽셀 단위로 더해져서 최종 영상이 생성된다. 생성된 영상은 저해상도 영상의 밴드와 고해상도 영상의 디테일을 포함한다. 제시하는 방법은 분광해상도와 공간해상도를 모두 보존할 수 있음을 실험적으로 확인하였다.