• Title/Summary/Keyword: High cooling rate

Search Result 618, Processing Time 0.026 seconds

Effect of cooling rate on the microstructure and impact toughness of Cu-bearing HSLA steels (Cu를 함유한 HSLA강의 미세 조직과 인성에 미치는 냉각 속도의 영향)

  • 박태원;심인옥;김영우;강정윤;박화순
    • Journal of Welding and Joining
    • /
    • v.13 no.2
    • /
    • pp.122-131
    • /
    • 1995
  • The effects of cooling rate on the microstructures, precipitation of Cu-cluster, .epsilon.-Cu and impact toughness of high strength low alloy(HSLA) steel were studied using hardness tester, impact tester, DSC(differential scanning calorimetry), AES(auger electron spectroscopy) and TEM(transmission electron microscopy). Not only the Cu-precipitates but also the segregation of Cu, As, Sb, P, S, N, Sn along grain boundary were not observed at the specimens heat treated from 800.deg. C to 300.deg. C with the cooling time of 12-125 sec. The Cu-cluster, .epsilon.-Cu are formed by introducing ageing after cooling and the effect of precipitates on hardening increase after cooling was the same in all cooling rate. The peak hardness was obtained at an ageing of 500.deg. C in all cooling conditions. The impact energy become higher as the cooling time increases. This fact can be explained to be due to the tempering effect applied on the cooling stage since the present alloy has a relatively high Ms temperature and the local high concentration of the retained austenite.

  • PDF

HELIUM CONCENTRATION DECREASE DUE TO AIR ENTRAINMENT INTO GLASS FIBER COOLING UNIT IN A HIGH SPEED OPTICAL FIBER DRAWING PROCESS (광섬유 고속인출공정용 유리섬유 냉각장치 내 공기유입에 의한 내부헬륨농도 저하현상 연구)

  • Kim, K.;Kim, D.;Kwak, H.S.;Park, S.H.;Song, S.H.
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.92-98
    • /
    • 2010
  • In a modern high speed drawing process of optical fibers, it is necessary to use helium as a cooling gas in a glass fiber cooling unit in order to sufficiently cool down the fast moving glass fiber freshly drawn from the heated silica preform in the furnace. Since the air is entrained unavoidably when the glass fiber passes through the cooling unit, the helium is needed to be injected constantly into the cooling unit. The present numerical study investigates and analyzes the air entrainment using an axisymmetric geometry of glass fiber cooling unit. The effects of helium injection rate and direction on the air entrainment rate are discussed in terms of helium purity of cooling gas inside the cooling unit. For a given rate of helium injection, it is found that there exists a certain drawing speed that results in sudden increase in the air entrainment rate, which leads to the decreasing helium purity and therefore the cooling performance of the glass fiber cooling unit. Also, the helium injection in aiding direction is found to be more advantageous than the injection in opposing direction.

An experimental study of freezing phenomenon with supercooled water region (과냉각을 동반하는 물의 동결현상에 관한 실험)

  • Yoon, J.I.;Kim, J.D.;Kum, J.S.;Chu, M.S.;Kamata, Y.;Kato, T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.2
    • /
    • pp.104-111
    • /
    • 1997
  • The freezing phenomenon of saturated water with the supercooled region in a horizontal circular cylinder has been studied experimentally by using the holographic real time interferometry technique. From the experiments, it was found that there were three types of freezing patterns. The first is the annular ice layer growing from the cylinder surface at a high cooling rate; the next is the asymmetric ice layer at a moderate cooling rate; and the last is the instantaneous ice layer growth over the full region at lower cooling rate. As the water was coolde from room temperature to the subfreezing point passing through the density inversion point, the freezing pattern was largely affected by the inversion phenomenon, which had much effected the free convection and was susceptible to influences from the cooling rate. When the cooling rate is high, supercooling energy is released before the water is sufficientry mixed by free convection. On the other hand, when the cooling rate is low, there is much time for the water to be mixed by free convection. This seems to be the reason why the different ice layer growths occur.

  • PDF

Air Cooling Characteristics of a High Speed Spindle System for Machine Tools (공작기계용 고속주축계의 공기냉각특성에 관한 연구)

  • Choi, Dae-Bong;Kim, Suk-Il;Song, Ji-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.123-128
    • /
    • 1994
  • A high speed spindle system for machine tools can be used to reduce the machining time, to improve the machining accuracy, to perform the machining of light metals and hard materials, and to unite the cutting and grinding processes. In this study, a high speed spindle system is developed by applying the oil-air lubrication method, angular contact ball bearings, injection nozzles with dual orifices, cooling jacket and so on. And an air cooling experiment for evaluating the performance of the spindle system is carried out. Especially, in ofder to establish the air cooling conditions related to the development of a high speed spindle system, the effects of cooling air pressure, oil supply rate, air supply rate and rotational spindle speed are studied and discussed on the bearing temperature rise and frictional torque. Also the effects of cooling air pressure, rotational spindle speed and spindle system structure is investigated on the bearing temperature distribution. The experiment on the test model reveals the usefulness of the air cooling method.

  • PDF

Microstructure and Mechanical Properties of Fe-Si-Mn-P High Strength Steel Sheet Controlled by Cooling Rate (냉각제어된 Fe-Si-Mn-P 고장력 강판의 미세조직 및 기계적성질)

  • Moon, Won-Jin;Kim, Ik-Su;Kang, Chang-Yong;Kim, Heon-Ju;Sung, Jang-Hyun;Kim, Ki-Don
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.2
    • /
    • pp.109-120
    • /
    • 1997
  • Microstructure and mechanical properties of Fe-Si-Mn-P high strength steel sheet have been investigated by controlling the cooling rate. Bainite and ferrite were obtatined by annealing in the ferrite pluse austenite region, and ferrite and austenite were obtatined after annealing in the fully austenite region. Ferrite and pearlite were obtained when the cooling rate was controlled from the annealing temperature above $760^{\circ}C$ and bainite showed with increasing cooling rate, however below $760^{\circ}C$ ferrite and bainite were obtained. Tensile strengths and hardness nearly unchanged with increasing cooling rate after control the cooling rate from the temperature above $760^{\circ}C$, while tensile strengths increased and elongation decreased with increasing cooling rate when the cooling rate was controlled from the tempeature below $760^{\circ}C$. Without regard to annealing temperature, tensile strength increased and elongation decreased with increasing cooling rate. Tensile strengths and elongation values heat treated in the ferrite plus austenite region were higher than those in the fully austenite region. Retained austenite and strength-elongation balance showed the maximum value at $780^{\circ}C$ and decreased with increasing annealing temperature. Strength-elongation balance value was controlled by the retained austenite.

  • PDF

A Numerical Study on Cooling Characteristics of a Rocket-engine-based Incinerator Devised for High Burning Rate of Solid Particles (고체입자의 높은 연소율을 갖기 위해 고안된 로켓 엔진 기반 소각로의 냉각 해석)

  • Son, Jinwoo;Sohn, Chae Hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.1-10
    • /
    • 2016
  • Cooling characteristics are investigated numerically in the chamber for high-performance burnout of wastes with solid phase. Before the combustion chamber is manufactured, combustion analysis is performed for evaluation of burning rate and cooling performance. A water cooling method is applied and its feasibility for cooling is examined depending on coolant flow rate. Another method of complex cooling is adopted by combining air film cooling with water cooling, leading to improved cooling performance.

The Application of Direct Water Quenching Process in Hot Stamping of Boron Steels (보론강 판재 핫스탬핑시 직수분사냉각 공정의 적용성)

  • Park, Hyeon Tae;Kwon, Eui Pyo;Im, Ik-Tae
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.818-824
    • /
    • 2019
  • In this study, the direct water quenching technique is applied to validate the applicability of direct water quenching as a cooling method in the hot stamping process of 3.2 mm thick boron steel sheet. Cooling performance of conventional die quenching and direct water quenching is compared. Higher cooling rate is obtained by hot stamping with direct water quenching compared to die quenching. As the flow rate of cooling water increases, the cooling rate increases, and a high cooling rate of 71 ℃/s is achieved under flow rate conditions of 0.8 L/min. Through direct water quenching, the cooling time required for sufficient cooling of the sheet is reduced. Full martensitic microstructure is obtained under flow rate condition of 0.8 L/min. Hardness increases with increasing flow rate. From these results, it is verified that the direct water quenching is applicable to the hot stamping of thick boron steel sheet.

A Study on the Cooling Characteristics of Cooling-Jacket in High-Speed Spindle according to the Flow Rate (고속 주축계의 자켓의 유량 변화에 따른 냉각 특성)

  • 김태원;김수태;최대봉;김태형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.332-336
    • /
    • 2000
  • Cooling characteristics of cooling jacket for spindle system with built-in motor are studied. For the analysis, three dimensional model for the cooling jacket is built by using finite volume method. The three dimensional model includes the estimation on the amount of heat generation of bearing and built-in motor and the thermal characteristic values such as heat flux on the boundary. Numerical results show that flow rate are important factors for cooling characteristics of cooling jacket.

  • PDF

Evaluation of Design Parameters for Optimizing the Cooling Channel in Hot Press Bending Process (핫 프레스 벤딩 공정에서 냉각회로 최적화를 위한 공정변수의 평가)

  • Nam, Ki-Ju;Choi, Hong-Seok;Ko, Dae-Cheol;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1267-1273
    • /
    • 2009
  • Hot press forming can produce high-strength components by rapidly cooling between closed punch and die after hot forming using quenchable boron steel austenized in a furnace. In the hot press forming process, the cooling rate is influenced by the size, position and arrangement of the cooling channel and the file condition of cooling water in the die. Also, mechanical properties of the final components and operation time are related to cooling rate. Therefore, the design of optimized cooling channel is one of the most important works. In this paper, the effect of position and size of the cooling channel on the cooling rate was investigated by using design of experiment and FE analysis in hot press bending process. Therefore the optimum cooling channel ratio was presented in the HPB.

Effects of Ni addition on continuous cooling transformation behavior of low carbon HSLA steels (저탄소${\cdot}$저합금 강의 연속 냉각 변태에 미치는 Ni의 영향)

  • Kang J. S.;Jun J. H.;Park C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.456-459
    • /
    • 2005
  • Continuous cooling transformation behaviors were studied fur low carbon HSLA steels containing three different level $(1\~3\;wt\%)$ of Ni addition. Thermo-mechanical processing (TMP) simulations to construct continuous cooling (CCT) diagram were conducted by using Gleeble system. As cooling rate increased, pearlite, granular bainite, acicular ferrite, bainitic ferrite and lath martensite were transformed from deformed austenite. Fully bainitic microstructure were developed at all cooling rate condition in high Ni containing steel due to hardenability increasing effects of Ni. Ni also influenced the transformation kinetics. At the slowest cooling rate of $0.3^{\circ}C/s$, transformation delayed with decreasing Ni contents because of the diffusion of substitutional alloy elements. However, cooling rate slightly increased to $1^{\circ}C/s$, transformation kinetics accelerated with decreasing Ni contents because nucleation of bainite was sluggish due to hardening of residual austenite.

  • PDF